Abstract In the last decade and a half, advances in genetic sequencing technologies have revolutionized systematics, transforming the field from studying morphological characters or a few genetic markers, to genomic datasets in the phylogenomic era. A plethora of molecular phylogenetic studies on many taxonomic groups have come about, converging on, or refuting prevailing morphology or legacy‐marker‐based hypotheses about evolutionary affinities. Spider systematics has been no exception to this transformation and the inter‐relationships of several groups have now been studied using genomic data. About 51 500 extant spider species have been described, all with a conservative body plan, but innumerable morphological and behavioural peculiarities. Inferring the spider tree of life using morphological data has been a challenging task. Molecular data have corroborated many hypotheses of higher‐level relationships, but also resulted in new groups that refute previous hypotheses. In this review, we discuss recent advances in the reconstruction of the spider tree of life and highlight areas where additional effort is needed with potential solutions. We base this review on the most comprehensive spider phylogeny to date, representing 131 of the 132 spider families. To achieve this sampling, we combined six Sanger‐based markers with newly generated and publicly available genome‐scale datasets. We find that some inferred relationships between major lineages of spiders (such as Austrochiloidea, Palpimanoidea and Synspermiata) are robust across different classes of data. However, several new hypotheses have emerged with different classes of molecular data. We identify and discuss the robust and controversial hypotheses and compile this blueprint to design future studies targeting systematic revisions of these problematic groups. We offer an evolutionary framework to explore comparative questions such as evolution of venoms, silk, webs, morphological traits and reproductive strategies.
more »
« less
Measuring What We Don't Know: Biodiversity Catalogs Reveal Bias in Taxonomic Effort
Abstract Biodiversity catalogs are an invaluable resource for biological research. Efforts to scientifically document biodiversity have not been evenly applied, either because of charisma or because of ease of study. Spiders are among the most precisely cataloged and diverse invertebrates, having surpassed 50,000 described species globally. The World Spider Catalog presents a unique opportunity to assess the disproportionate documentation of spider diversity. In the present article, we develop a taxonomic ratio relating new species descriptions to other taxonomic activity as a proxy for taxonomic effort, using spiders as a case study. We use this taxonomic effort metric to examine biases along multiple axes: phylogeny, zoogeography, and socioeconomics. We also use this metric to estimate the number of species that remain to be described. This work informs arachnologists in identifying high-priority taxa and regions for species discovery and highlights the benefits of maintaining open-access taxonomic databases—a necessary step in overcoming bias and documenting the world's biodiversity.
more »
« less
- Award ID(s):
- 2026623
- PAR ID:
- 10400044
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- BioScience
- Volume:
- 73
- Issue:
- 2
- ISSN:
- 0006-3568
- Format(s):
- Medium: X Size: p. 112-123
- Size(s):
- p. 112-123
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We are far from knowing all species living on the planet. Understanding biodiversity is demanding and requires time and expertise. Most groups are understudied given problems of identifying and delimiting species. DNA barcoding emerged to overcome some of the difficulties in identifying species. Its limitations derive from incomplete taxonomic knowledge and the lack of comprehensive DNA barcode libraries for so many taxonomic groups. Here, we evaluate how useful barcoding is for identifying arthropods from highly diverse leaf litter communities in the southern Appalachian Mountains (USA). We used 3 reference databases and several automated classification methods on a data set including several arthropod groups. Acari, Araneae, Collembola, Coleoptera, Diptera, and Hymenoptera were well represented, showing different performances across methods and databases. Spiders performed the best, with correct identification rates to species and genus levels of ~50% across databases. Springtails performed poorly, no barcodes were identified to species or genus. Other groups showed poor to mediocre performance, from around 3% (mites) to 20% (beetles) correctly identified barcodes to species, but also with some false identifications. In general, BOLD-based identification offered the best identification results but, in all cases except spiders, performance is poor, with less than a fifth of specimens correctly identified to genus or species. Our results indicate that the soil arthropod fauna is still insufficiently documented, with many species unrepresented in DNA barcode libraries. More effort toward integrative taxonomic characterization is needed to complete our reference libraries before we can rely on DNA barcoding as a universally applicable identification method.more » « less
-
Abstract This study summarizes the taxonomic treatment of the camel spider genus Chanbria Muma, 1951. Taking an integrative taxonomic approach incorporating phylogenomic, morphological, and geographical information, the genus is herein revised. Of the four species currently placed in the genus, two are retained: Chanbria regalis Muma, 1951 and Chanbria serpentinus Muma, 1951. Eremochelis plicatus (Muma, 1962) is transferred to this genus because it is consistently recovered in a clade with Chanbria based on several phylogenetic analyses using hundreds of loci recovered from ultraconserved element data. In this study, we re-analyse previously acquired genomic data to assess former species hypotheses and identify new morphological synapomorphies that support the monophyly of Chanbria. The genetic data support the synonymization of Chanbria rectus Muma, 1962 syn. nov. with C. regalis. Furthermore, we synonymize Chanbria tehachapianus Muma, 1962 syn. nov. with C. regalis because C. tehachapianus was erected based on limited morphological information and lack of geographical separation between other populations of C. regalis. Two new species, Chanbria brookharti sp. nov. and Chanbria mapemes sp. nov., are described. This brings the total number of species of Chanbria described to five recognized species: C. regalis, C. serpentinus, C. plicatus com. nov., C. brookharti sp. nov., and C. mapemes sp. nov.more » « less
-
Abstract Body size influences an individual's physiology and the nature of its intra‐ and interspecific interactions. Changes in this key functional trait can therefore have important implications for populations as well. For example, among invertebrates, there is typically a positive correlation between female body size and reproductive output. Increasing body size can consequently trigger changes in population density, population structure (e.g. adult to juvenile ratio) and the strength of intraspecific competition.Body size changes have been documented in several species in the Arctic, a region that is warming rapidly. In particular, wolf spiders, one of the most abundant arctic invertebrate predators, are becoming larger and therefore more fecund. Whether these changes are affecting their populations and role within food webs is currently unclear.We investigated the population structure and feeding ecology of the dominant wolf spider speciesPardosa lapponicaat two tundra sites where adult spiders naturally differ in mean body size. Additionally, we performed a mesocosm experiment to investigate how variation in wolf spider density, which is likely to change as a function of body size, influences feeding ecology and its sensitivity to warming.We found that juvenile abundance is negatively associated with female size and that wolf spiders occupied higher trophic positions where adult females were larger. Because female body size is positively related to fecundity inP. lapponica, the unexpected finding of fewer juveniles with larger females suggests an increase in density‐dependent cannibalism as a result of increased intraspecific competition for resources. Higher rates of density‐dependent cannibalism are further supported by the results from our mesocosm experiment, in which individuals occupied higher trophic positions in plots with higher wolf spider densities. We observed no changes in wolf spider feeding ecology in association with short‐term experimental warming.Our results suggest that body size variation in wolf spiders is associated with variation in intraspecific competition, feeding ecology and population structure. Given the widespread distribution of wolf spiders in arctic ecosystems, body size shifts in these predators as a result of climate change could have implications for lower trophic levels and for ecosystem functioning.more » « less
-
Abstract Human actions are decreasing the diversity and complexity of forests, and a mechanistic understanding of how these changes affect predators is needed to maintain ecosystem services, including pest regulation. Using a large‐scale tree diversity experiment, we investigate how spiders respond to trees growing in plots of single or mixed species combinations (4 or 12) by repeatedly sampling 540 trees spanning 15 species. In 2019 (6 years post‐establishment), spider responses to tree diversity varied by tree species. By 2021, diversity had a more consistently positive effect, with trees in 4‐ or 12‐species plots supporting 23% or 50% more spiders, respectively, compared to conspecifics in monocultures. Spiders showed stronger tree species preferences in late summer, and the positive impact of plot diversity doubled. In early summer, the positive diversity effect was tied to higher canopy cover in diverse plots, leading to higher spider densities. This indirect path strengthened in late summer, with an additional direct effect of plot diversity on spiders. Prey availability was higher in diverse plots but was not tied to spider density. Overall, diverse plots supported more predators, partly by increasing available habitat. Adopting planting strategies focused on species mixtures may better maintain higher trophic levels and ecosystem functions.more » « less
An official website of the United States government
