skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: Self-stabilizing three-dimensional particle manipulation via a single-transducer acoustic tweezer

This paper investigates the mechanism of self-stabilizing, three-dimensional Mie particle manipulation in water via an acoustic tweezer with a single transducer. A carefully designed acoustic lens is attached to the transducer to form an acoustic vortex, which provides angular momentum on the trapped polymer sphere and leads to a fast-spinning motion. The sphere can find equilibrium positions spontaneously during the manipulation by slightly adjusting its relative position, angular velocity, and spinning axis. The spinning motion greatly enhances the low-pressure recirculation region around the sphere, resulting in a larger pressure induced drag. Simultaneously, the Magnus effect is induced to generate an additional lateral force. The spinning motion of the trapped sphere links the acoustic radiation force and hydrodynamic forces together, so that the sphere can spontaneously achieve new force balance and follow the translational motion of the acoustic tweezer. Non-spherical objects can also be manipulated by this acoustic tweezer.

 
more » « less
NSF-PAR ID:
10400053
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Applied Physics Letters
Volume:
122
Issue:
9
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Acoustic tweezers use ultrasound for contact-free manipulation of particles from millimeter to sub-micrometer scale. Particle trapping is usually associated with either radiation forces or acoustic streaming fields. Acoustic tweezers based on single-beam focused acoustic vortices have attracted considerable attention due to their selective trapping capability, but have proven difficult to use for three-dimensional (3D) trapping without a complex transducer array and significant constraints on the trapped particle properties. Here we demonstrate a 3D acoustic tweezer in fluids that uses a single transducer and combines the radiation force for trapping in two dimensions with the streaming force to provide levitation in the third dimension. The idea is demonstrated in both simulation and experiments operating at 500 kHz, and the achieved levitation force reaches three orders of magnitude larger than for previous 3D trapping. This hybrid acoustic tweezer that integrates acoustic streaming adds an additional twist to the approach and expands the range of particles that can be manipulated.

     
    more » « less
  2. The center-of-mass motion of optically trapped dielectric nanoparticles in a vacuum is extremely well decoupled from its environment, making a powerful tool for measurements of feeble subattonewton forces. We demonstrate a method to trap and maneuver nanoparticles in an optical standing wave potential formed by retroreflecting a laser beam from a metallic mirror surface. We can reliably position a ∼ 170 n m diameter silica nanoparticle at distances of a few hundred nanometers to tens of micrometers from the surface of a gold-coated silicon mirror by transferring it from a single-beam tweezer trap into the standing wave potential. We can further measure forces experienced by the particle while scanning the two-dimensional space parallel to the mirror surface, and we find no significant excess force noise in the vicinity of the surface. This method may enable three-dimensional scanning force sensing near surfaces using optically trapped nanoparticles, promising for high-sensitivity scanning force microscopy, tests of the Casimir effect, and tests of the gravitational inverse square law at micrometer scales. 
    more » « less
  3. Abstract Background

    Millions of catheters for invasive arterial pressure monitoring are placed annually in intensive care units, emergency rooms, and operating rooms to guide medical treatment decision-making. Accurate assessment of arterial blood pressure requires an IV pole-attached pressure transducer placed at the same height as a reference point on the patient’s body, typically, the heart. Every time a patient moves, or the bed is adjusted, a nurse or physician must adjust the height of the pressure transducer. There are no alarms to indicate a discrepancy between the patient and transducer height, leading to inaccurate blood pressure measurements.

    Methods

    We present a low-power wireless wearable tracking device that uses inaudible acoustic signals emitted from a speaker array to automatically compute height changes and correct the mean arterial blood pressure. Performance of this device was tested in 26 patients with arterial lines in place.

    Results

    Our system calculates the mean arterial pressure with a bias of 0.19, inter-class correlation coefficients of 0.959 and a median difference of 1.6 mmHg when compared to clinical invasive arterial measurements.

    Conclusions

    Given the increased workload demands on nurses and physicians, our proof-of concept technology may improve accuracy of pressure measurements and reduce the task burden for medical staff by automating a task that previously required manual manipulation and close patient surveillance.

     
    more » « less
  4. Abstract

    Acoustic holographic lenses (AHLs) show great potential as a straightforward, inexpensive, and reliable method of sound manipulation. These lenses store the phase and amplitude profile of the desired wavefront when illuminated by a single acoustic source to reconstruct ultrasound pressure fields, induce localized heating, and achieve temporal and spatial thermal effects in acousto-thermal materials like polymers. The ultrasonic energy is transmitted and focused by AHL from a transducer into a particular focal volume. It is then converted to heat by internal friction in the polymer chains, causing the temperature of the polymer to rise at the focus locations while having little to no effect elsewhere. This one-of-a-kind capability is made possible by the development of AHLs to make use of the translation of attenuated pressure fields into programmable heat patterns. However, the impact of acousto-thermal dynamics on the generation of AHLs is largely unexplored. We use a machine learning-assisted single inverse problem approach for rapid and efficient AHLs’ design to generate thermal patterns. The process involves the conversion of thermal information into a holographic representation through the utilization of two latent functions: pressure phase and amplitude. Experimental verification is performed for pressure and thermal measurements. The volumetric acousto-thermal analysis of experimental samples is performed to offer a knowledge of the obtained pattern dynamics, as well as the applicability of holographic thermal mapping for precise volumetric temperature control. Finally, the proposed framework aims to provide a solid foundation for volumetric analysis of acousto-thermal patterns within thick samples and for assessing thermal changes with outer surface measurements.

     
    more » « less
  5. Acoustic trapping uses forces exerted by sound waves to transport small objects along specified trajectories in three dimensions. The structure of the time-averaged acoustic force landscape acting on an object is determined by the amplitude and phase profiles of the sound's pressure wave. These profiles typically are sculpted by deliberately selecting the amplitude and relative phase of the sound projected by each transducer in large arrays of transducers, all operating at the same carrier frequency. This approach leverages a powerful analogy with holographic optical trapping at the cost of considerable technical complexity. Acoustic force fields also can be shaped by the spectral content of the component sound waves in a manner that is not feasible with light. The same theoretical framework that predicts the time-averaged structure of monotone acoustic force landscapes can be applied to spectrally rich sound fields in the quasistatic approximation, creating opportunities for dexterous control using comparatively simple hardware. We demonstrate this approach to spectral holographic acoustic trapping by projecting acoustic conveyor beams that move millimeter-scale objects along prescribed paths. Spectral control of reflections provides yet another opportunity for controlling the structure and dynamics of an acoustic force landscape. We use this approach to realize two variations on the theme of a wave-driven oscillator, a deceptively simple dynamical system with surprisingly complex phenomenology. 
    more » « less