skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Special invited paper: The SCORE normalization, especially for heterogeneous network and text data
SCORE was introduced as a spectral approach to network community detection. Since many networks have severe degree heterogeneity, the ordinary spectral clustering (OSC) approach to community detection may perform unsatisfactorily. SCORE alleviates the effect of degree heterogeneity by introducing a new normalization idea in the spectral domain and makes OSC more effective. SCORE is easy to use and computationally fast. It adapts easily to new directions and sees an increasing interest in practice. In this paper, we review the basics of SCORE, the adaption of SCORE to network mixed membership estimation and topic modeling, and the application of SCORE in real data, including two datasets on the publications of statisticians. We also review the theoretical “ideology” underlying SCORE. We show that in the spectral domain, SCORE converts a simplicial cone to a simplex and provides a simple and direct link between the simplex and network memberships. SCORE attains an exponential rate and a sharp phase transition in community detection, and achieves optimal rates in mixed membership estimation and topic modeling.  more » « less
Award ID(s):
2015469 1943902
PAR ID:
10400084
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Stat
Volume:
12
Issue:
1
ISSN:
2049-1573
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A network may have weak signals and severe degree heterogeneity, and may be very sparse in one occurrence but very dense in another. SCORE (Ann. Statist. 43, 57–89, 2015) is a recent approach to network community detection. It accommodates severe degree heterogeneity and is adaptive to different levels of sparsity, but its performance for networks with weak signals is unclear. In this paper, we show that in a broad class of network settings where we allow for weak signals, severe degree heterogeneity, and a wide range of network sparsity, SCORE achieves prefect clustering and has the so-called “exponential rate” in Hamming clustering errors. The proof uses the most recent advancement on entry-wise bounds for the leading eigenvectors of the network adjacency matrix. The theoretical analysis assures us that SCORE continues to work well in the weak signal settings, but it does not rule out the possibility that SCORE may be further improved to have better performance in real applications, especially for networks with weak signals. As a second contribution of the paper, we propose SCORE+ as an improved version of SCORE. We investigate SCORE+ with 8 network data sets and found that it outperforms several representative approaches. In particular, for the 6 data sets with relatively strong signals, SCORE+ has similar performance as that of SCORE, but for the 2 data sets (Simmons, Caltech) with possibly weak signals, SCORE+ has much lower error rates. SCORE+ proposes several changes to SCORE. We carefully explain the rationale underlying each of these changes, using a mixture of theoretical and numerical study. 
    more » « less
  2. null; null (Ed.)
    Consider a large social network with possibly severe degree heterogeneity and mixed-memberships. We are interested in testing whether the network has only one community or there are more than one communities. The problem is known to be non-trivial, partially due to the presence of severe degree heterogeneity. We construct a class of test statistics using the numbers of short paths and short cycles, and the key to our approach is a general framework for canceling the effects of degree heterogeneity. The tests compare favorably with existing methods. We support our methods with careful analysis and numerical study with simulated data and a real data example. 
    more » « less
  3. Text analysis is an interesting research area in data science and has various applications, such as in artificial intelligence, biomedical research, and engineering. We review popular methods for text analysis, ranging from topic modeling to the recent neural language models. In particular, we review Topic-SCORE, a statistical approach to topic modeling, and discuss how to use it to analyze the Multi-Attribute Data Set on Statisticians (MADStat), a data set on statistical publications that we collected and cleaned. The application of Topic-SCORE and other methods to MADStat leads to interesting findings. For example, we identified 11 representative topics in statistics. For each journal, the evolution of topic weights over time can be visualized, and these results are used to analyze the trends in statistical research. In particular, we propose a new statistical model for ranking the citation impacts of 11 topics, and we also build a cross-topic citation graph to illustrate how research results on different topics spread to one another. The results on MADStat provide a data-driven picture of the statistical research from 1975 to 2015, from a text analysis perspective. 
    more » « less
  4. Community detection tasks have received a lot of attention across statistics, machine learning, and information theory with work concentrating on providing theoretical guarantees for different methodological approaches to the stochastic block model. Recent work on community detection has focused on modeling the spectral embedding of a network using Gaussian mixture models (GMMs) in scaling regimes where the ability to detect community memberships improves with the size of the network. However, these regimes are not very realistic. This paper provides tractable methodology motivated by new theoretical results for networks with non-vanishing noise. We present a procedure for community detection using novel GMMs that incorporate truncation and shrinkage effects. We provide empirical validation of this new representation as well as experimental results using a large email dataset. 
    more » « less
  5. null (Ed.)
    Graph clustering is a core technique for network analysis problems, e.g., community detection. This work puts forth a node clustering approach for largely incomplete adjacency graphs. Under the considered scenario, instead of having access to the complete graph, only a small amount of queries about the graph edges can be made for node clustering. This task is well-motivated in many large-scale network analysis problems, where complete graph acquisition is prohibitively costly. Prior work tackles this problem under the setting that the nodes only admit single membership and the clusters are disjoint, yet multiple membership nodes and overlapping clusters often arise in practice. Existing approaches also rely on random edge query patterns and convex optimization-based formulations, which give rise to a number of implementation and scalability challenges. This work offers a framework that provably learns the mixed membership of nodes from overlapping clusters using limited edge information. Our method is equipped with a systematic edge query pattern, which is arguably easier to implement relative to the random counterparts in certain applications, e.g., field survey based graph analysis. A lightweight scalable algorithm is proposed, and its performance characterizations are presented. Numerical experiments are used to showcase the effectiveness of our method 
    more » « less