Motivated by applications in text mining and discrete distribution inference, we test for equality of probability mass functions of K groups of high-dimensional multinomial distributions. Special cases of this problem include global testing for topic models, two-sample testing in authorship attribution, and closeness testing for discrete distributions. A test statistic, which is shown to have an asymptotic standard normal distribution under the null hypothesis, is proposed. This parameter-free limiting null distribution holds true without requiring identical multinomial parameters within each group or equal group sizes. The optimal detection boundary for this testing problem is established, and the proposed test is shown to achieve this optimal detection boundary across the entire parameter space of interest. The proposed method is demonstrated in simulation studies and applied to analyse two real-world datasets to examine, respectively, variation among customer reviews of Amazon movies and the diversity of statistical paper abstracts.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available February 28, 2025 -
Free, publicly-accessible full text available June 3, 2025
-
Topic modeling is a widely utilized tool in text analysis. We investigate the optimal rate for estimating a topic model. Specifically, we consider a scenario with n documents, a vocabulary of size p, and document lengths at the order N. When N≥c·p, referred to as the long-document case, the optimal rate is established in the literature at p/(Nn). However, when N=o(p), referred to as the short-document case, the optimal rate remains unknown. In this paper, we first provide new entry-wise large-deviation bounds for the empirical singular vectors of a topic model. We then apply these bounds to improve the error rate of a spectral algorithm, Topic-SCORE. Finally, by comparing the improved error rate with the minimax lower bound, we conclude that the optimal rate is still p/(Nn) in the short-document case.
Free, publicly-accessible full text available June 1, 2025 -
Text analysis is an interesting research area in data science and has various applications, such as in artificial intelligence, biomedical research, and engineering. We review popular methods for text analysis, ranging from topic modeling to the recent neural language models. In particular, we review Topic-SCORE, a statistical approach to topic modeling, and discuss how to use it to analyze the Multi-Attribute Data Set on Statisticians (MADStat), a data set on statistical publications that we collected and cleaned. The application of Topic-SCORE and other methods to MADStat leads to interesting findings. For example, we identified 11 representative topics in statistics. For each journal, the evolution of topic weights over time can be visualized, and these results are used to analyze the trends in statistical research. In particular, we propose a new statistical model for ranking the citation impacts of 11 topics, and we also build a cross-topic citation graph to illustrate how research results on different topics spread to one another. The results on MADStat provide a data-driven picture of the statistical research from 1975 to 2015, from a text analysis perspective.
Free, publicly-accessible full text available April 22, 2025 -
Given a K-vertex simplex in a d-dimensional space, suppose we measure n points on the simplex with noise (hence, some of the observed points fall outside the sim- plex). Vertex hunting is the problem of estimating the K vertices of the simplex. A popular vertex hunting algorithm is successive projection algorithm (SPA). How- ever, SPA is observed to perform unsatisfactorily under strong noise or outliers. We propose pseudo-point SPA (pp-SPA). It uses a projection step and a denoise step to generate pseudo-points and feed them into SPA for vertex hunting. We derive error bounds for pp-SPA, leveraging on extreme value theory of (possibly) high-dimensional random vectors. The results suggest that pp-SPA has faster rates and better numerical performances than SPA. Our analysis includes an improved non-asymptotic bound for the original SPA, which is of independent interest.more » « lessFree, publicly-accessible full text available March 1, 2025
-
The knockoff filter is a recent false discovery rate (FDR) control method for high-dimensional linear models. We point out that knockoff has three key components: ranking algorithm, augmented design, and symmetric statistic, and each component admits multiple choices. By considering various combinations of the three components, we obtain a collection of variants of knockoff. All these variants guarantee finite-sample FDR control, and our goal is to compare their power. We assume a Rare and Weak signal model on regression coeffi- cients and compare the power of different variants of knockoff by deriving explicit formulas of false positive rate and false negative rate. Our results provide new insights on how to improve power when controlling FDR at a targeted level. We also compare the power of knockoff with its propotype - a method that uses the same ranking algorithm but has access to an ideal threshold. The comparison reveals the additional price one pays by finding a data-driven threshold to control FDR.more » « lessFree, publicly-accessible full text available January 1, 2025
-
Subject clustering (i.e., the use of measured features to cluster subjects, such as patients or cells, into multiple groups) is a problem of significant interest. In recent years, many approaches have been proposed, among which unsupervised deep learning (UDL) has received much attention. Two interesting questions are 1) how to combine the strengths of UDL and other approaches and 2) how these approaches compare to each other. We combine the variational auto-encoder (VAE), a popular UDL approach, with the recent idea of influential feature-principal component analysis (IF-PCA) and propose IF-VAE as a new method for subject clustering. We study IF-VAE and compare it with several other methods (including IF-PCA, VAE, Seurat, and SC3) on 10 gene microarray data sets and eight single-cell RNA-seq data sets. We find that IF-VAE shows significant improvement over VAE, but still underperforms compared to IF-PCA. We also find that IF-PCA is quite competitive, slightly outperforming Seurat and SC3 over the eight single-cell data sets. IF-PCA is conceptually simple and permits delicate analysis. We demonstrate that IF-PCA is capable of achieving phase transition in a rare/weak model. Comparatively, Seurat and SC3 are more complex and theoretically difficult to analyze (for these reasons, their optimality remains unclear).more » « less
-
SCORE was introduced as a spectral approach to network community detection. Since many networks have severe degree heterogeneity, the ordinary spectral clustering (OSC) approach to community detection may perform unsatisfactorily. SCORE alleviates the effect of degree heterogeneity by introducing a new normalization idea in the spectral domain and makes OSC more effective. SCORE is easy to use and computationally fast. It adapts easily to new directions and sees an increasing interest in practice. In this paper, we review the basics of SCORE, the adaption of SCORE to network mixed membership estimation and topic modeling, and the application of SCORE in real data, including two datasets on the publications of statisticians. We also review the theoretical “ideology” underlying SCORE. We show that in the spectral domain, SCORE converts a simplicial cone to a simplex and provides a simple and direct link between the simplex and network memberships. SCORE attains an exponential rate and a sharp phase transition in community detection, and achieves optimal rates in mixed membership estimation and topic modeling.