skip to main content


Title: Ecological divergence of syntopic marine bacterial species is shaped by gene content and expression
Abstract

Identifying mechanisms by which bacterial species evolve and maintain genomic diversity is particularly challenging for the uncultured lineages that dominate the surface ocean. A longitudinal analysis of bacterial genes, genomes, and transcripts during a coastal phytoplankton bloom revealed two co-occurring, highly related Rhodobacteraceae species from the deeply branching and uncultured NAC11-7 lineage. These have identical 16S rRNA gene amplicon sequences, yet their genome contents assembled from metagenomes and single cells indicate species-level divergence. Moreover, shifts in relative dominance of the species during dynamic bloom conditions over 7 weeks confirmed the syntopic species’ divergent responses to the same microenvironment at the same time. Genes unique to each species and genes shared but divergent in per-cell inventories of mRNAs accounted for 5% of the species’ pangenome content. These analyses uncover physiological and ecological features that differentiate the species, including capacities for organic carbon utilization, attributes of the cell surface, metal requirements, and vitamin biosynthesis. Such insights into the coexistence of highly related and ecologically similar bacterial species in their shared natural habitat are rare.

 
more » « less
NSF-PAR ID:
10400108
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
The ISME Journal
Volume:
17
Issue:
6
ISSN:
1751-7362
Format(s):
Medium: X Size: p. 813-822
Size(s):
["p. 813-822"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Bacteria play key roles in the function and diversity of aquatic systems, but aside from study of specific bloom systems, little is known about the diversity or biogeography of bacteria associated with harmful cyanobacterial blooms (cyanoHABs). CyanoHAB species are known to shape bacterial community composition and to rely on functions provided by the associated bacteria, leading to the hypothesized cyanoHAB interactome, a coevolved community of synergistic and interacting bacteria species, each necessary for the success of the others. Here, we surveyed the microbiome associated withMicrocystis aeruginosaduring blooms in 12 lakes spanning four continents as an initial test of the hypothesizedMicrocystisinteractome. We predicted that microbiome composition and functional potential would be similar across blooms globally. Our results, as revealed by 16S rRNA sequence similarity, indicate thatM. aeruginosais cosmopolitan in lakes across a 280° longitudinal and 90° latitudinal gradient. The microbiome communities were represented by a wide range of operational taxonomic units and relative abundances. Highly abundant taxa were more related and shared across most sites and did not vary with geographic distance, thus, likeMicrocystis, revealing no evidence for dispersal limitation. High phylogenetic relatedness, both within and across lakes, indicates that microbiome bacteria with similar functional potential were associated with all blooms. WhileMicrocystisand the microbiome bacteria shared many genes, whole‐community metagenomic analysis revealed a suite of biochemical pathways that could be considered complementary. Our results demonstrate a high degree of similarity across globalMicrocystisblooms, thereby providing initial support for the hypothesizedMicrocystisinteractome.

     
    more » « less
  2. Abstract

    Marine phytoplankton are a diverse group of photoautotrophic organisms and key mediators in the global carbon cycle. Phytoplankton physiology and biomass accumulation are closely tied to mixed layer depth, but the intracellular metabolic pathways activated in response to changes in mixed layer depth remain less explored. Here, metatranscriptomics was used to characterize the phytoplankton community response to a mixed layer shallowing (from 233 to 5 m) over the course of two days during the late spring in the Northwest Atlantic. Most phytoplankton genera downregulated core photosynthesis, carbon storage, and carbon fixation genes as the system transitioned from a deep to a shallow mixed layer and shifted towards catabolism of stored carbon supportive of rapid cell growth. In contrast, phytoplankton genera exhibited divergent transcriptional patterns for photosystem light harvesting complex genes during this transition. Active virus infection, taken as the ratio of virus to host transcripts, increased in the Bacillariophyta (diatom) phylum and decreased in the Chlorophyta (green algae) phylum upon mixed layer shallowing. A conceptual model is proposed to provide ecophysiological context for our findings, in which integrated light limitation and lower division rates during transient deep mixing are hypothesized to disrupt resource-driven, oscillating transcript levels related to photosynthesis, carbon fixation, and carbon storage. Our findings highlight shared and unique transcriptional response strategies within phytoplankton communities acclimating to the dynamic light environment associated with transient deep mixing and shallowing events during the annual North Atlantic bloom.

     
    more » « less
  3. null (Ed.)
    Abstract Background Lagoons are common along coastlines worldwide and are important for biogeochemical element cycling, coastal biodiversity, coastal erosion protection and blue carbon sequestration. These ecosystems are frequently disturbed by weather, tides, and human activities. Here, we investigated a shallow lagoon in New England. The brackish ecosystem releases hydrogen sulfide particularly upon physical disturbance, causing blooms of anoxygenic sulfur-oxidizing phototrophs. To study the habitat, microbial community structure, assembly and function we carried out in situ experiments investigating the bloom dynamics over time. Results Phototrophic microbial mats and permanently or seasonally stratified water columns commonly contain multiple phototrophic lineages that coexist based on their light, oxygen and nutrient preferences. We describe similar coexistence patterns and ecological niches in estuarine planktonic blooms of phototrophs. The water column showed steep gradients of oxygen, pH, sulfate, sulfide, and salinity. The upper part of the bloom was dominated by aerobic phototrophic Cyanobacteria , the middle and lower parts by anoxygenic purple sulfur bacteria ( Chromatiales ) and green sulfur bacteria ( Chlorobiales ), respectively. We show stable coexistence of phototrophic lineages from five bacterial phyla and present metagenome-assembled genomes (MAGs) of two uncultured Chlorobaculum and Prosthecochloris species. In addition to genes involved in sulfur oxidation and photopigment biosynthesis the MAGs contained complete operons encoding for terminal oxidases. The metagenomes also contained numerous contigs affiliating with Microviridae viruses, potentially affecting Chlorobi . Our data suggest a short sulfur cycle within the bloom in which elemental sulfur produced by sulfide-oxidizing phototrophs is most likely reduced back to sulfide by Desulfuromonas sp . Conclusions The release of sulfide creates a habitat selecting for anoxygenic sulfur-oxidizing phototrophs, which in turn create a niche for sulfur reducers. Strong syntrophism between these guilds apparently drives a short sulfur cycle that may explain the rapid development of the bloom. The fast growth and high biomass yield of Chlorobi -affiliated organisms implies that the studied lineages of green sulfur bacteria can thrive in hypoxic habitats. This oxygen tolerance is corroborated by oxidases found in MAGs of uncultured Chlorobi . The findings improve our understanding of the ecology and ecophysiology of anoxygenic phototrophs and their impact on the coupled biogeochemical cycles of sulfur and carbon. 
    more » « less
  4. Abstract Background

    The hyperarid core of the Atacama Desert is an extremely harsh environment thought to be colonized by only a few heterotrophic bacterial species. Current concepts for understanding this extreme ecosystem are mainly based on the diversity of these few species, yet a substantial area of the Atacama Desert hyperarid topsoil is covered by expansive boulder accumulations, whose underlying microbiomes have not been investigated so far. With the hypothesis that these sheltered soils harbor uniquely adapted microbiomes, we compared metagenomes and geochemistry between soils below and beside boulders across three distantly located boulder accumulations in the Atacama Desert hyperarid core.

    Results

    Genome-resolved metagenomics of eleven samples revealed substantially different microbial communities in soils below and beside boulders, despite the presence of shared species. Archaea were found in significantly higher relative abundance below the boulders across all samples within distances of up to 205 km. These key taxa belong to a novel genus of ammonia-oxidizingThaumarchaeota,CandidatusNitrosodeserticola. We resolved eight mid-to-high quality genomes of this genus and used comparative genomics to analyze its pangenome and site-specific adaptations.Ca.Nitrosodeserticola genomes contain genes for ammonia oxidation, the 3-hydroxypropionate/4-hydroxybutyrate carbon fixation pathway, and acetate utilization indicating a chemolithoautotrophic and mixotrophic lifestyle. They also possess the capacity for tolerating extreme environmental conditions as highlighted by the presence of genes against oxidative stress and DNA damage. Site-specific adaptations of the genomes included the presence of additional genes for heavy metal transporters, multiple types of ATP synthases, and divergent genes for aquaporins.

    Conclusion

    We provide the first genomic characterization of hyperarid soil microbiomes below the boulders in the Atacama Desert, and report abundant and highly adaptedThaumarchaeaotawith ammonia oxidation and carbon fixation potential.Ca.Nitrosodeserticola genomes provide the first metabolic and physiological insight into a thaumarchaeal lineage found in globally distributed terrestrial habitats characterized by various environmental stresses. We consequently expand not only the known genetic repertoire ofThaumarchaeotabut also the diversity and microbiome functioning in hyperarid ecosystems.

     
    more » « less
  5. ProkaryoticNostoc, one of the world's most conspicuous and widespread algal genera (similar to eukaryotic algae, plants, and animals) is known to support a microbiome that influences host ecological roles. Past taxonomic characterizations of surface microbiota (epimicrobiota) of free‐livingNostocsampled from freshwater systems employed 16S rRNA genes, typically amplicons. We compared taxa identified from 16S, 18S, 23S, and 28S rRNA gene sequences filtered from shotgun metagenomic sequence and used microscopy to illuminate epimicrobiota diversity forNostocsampled from a wetland in the northern Chilean Altiplano. Phylogenetic analysis and rRNA gene sequence abundance estimates indicated that the host was related toNostoc punctiformePCC 73102. Epimicrobiota were inferred to include 18 epicyanobacterial genera or uncultured taxa, six epieukaryotic algal genera, and 66 anoxygenic bacterial genera, all having average genomic coverage ≥90X. The epicyanobacteriaGeitlerinemia,Oscillatoria,Phormidium, and an uncultured taxon were detected only by 16S rRNA gene;GloeobacterandPseudanabaenawere detected using 16S and 23S; andPhormididesmis,Neosynechococcus,Symphothece,Aphanizomenon,Nodularia,Spirulina,Nodosilinea,Synechococcus,Cyanobium, andAnabaena(the latter corroborated by microscopy), plus two uncultured cyanobacterial taxa (JSC12, O77) were detected only by 23S rRNA gene sequences. Three chlamydomonad and two heterotrophic stramenopiles genera were inferred from 18S; the streptophyte green algaChaetosphaeridium globosumwas detected by microscopy and 28S rRNA genes, but not 18S rRNA genes. Overall, >60% of epimicrobial taxa were detected by markers other than 16S rRNA genes. Some algal taxa observed microscopically were not detected from sequence data. Results indicate that multiple taxonomic markers derived from metagenomic sequence data and microscopy increase epimicrobiota detection.

     
    more » « less