skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Generating Poisson-Distributed Differentially Private Synthetic Data
Abstract The dissemination of synthetic data can be an effective means of making information from sensitive data publicly available with a reduced risk of disclosure. While mechanisms exist for synthesizing data that satisfy formal privacy guarantees, these mechanisms do not typically resemble the models an end-user might use to analyse the data. More recently, the use of methods from the disease mapping literature has been proposed to generate spatially referenced synthetic data with high utility but without formal privacy guarantees. The objective for this paper is to help bridge the gap between the disease mapping and the differential privacy literatures. In particular, we generalize an approach for generating differentially private synthetic data currently used by the US Census Bureau to the case of Poisson-distributed count data in a way that accommodates heterogeneity in population sizes and allows for the infusion of prior information regarding the underlying event rates. Following a pair of small simulation studies, we illustrate the utility of the synthetic data produced by this approach using publicly available, county-level heart disease-related death counts. This study demonstrates the benefits of the proposed approach’s flexibility with respect to heterogeneity in population sizes and event rates while motivating further research to improve its utility.  more » « less
Award ID(s):
1943730
PAR ID:
10400109
Author(s) / Creator(s):
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of the Royal Statistical Society Series A: Statistics in Society
Volume:
184
Issue:
3
ISSN:
0964-1998
Page Range / eLocation ID:
p. 1093-1108
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract CDC WONDER is a web-based tool for the dissemination of epidemiologic data collected by the National Vital Statistics System. While CDC WONDER has built-in privacy protections, they do not satisfy formal privacy protections such as differential privacy and thus are susceptible to targeted attacks. Given the importance of making high-quality public health data publicly available while preserving the privacy of the underlying data subjects, we aim to improve the utility of a recently developed approach for generating Poisson-distributed, differentially private synthetic data by using publicly available information to truncate the range of the synthetic data. Specifically, we utilize county-level population information from the US Census Bureau and national death reports produced by the CDC to inform prior distributions on county-level death rates and infer reasonable ranges for Poisson-distributed, county-level death counts. In doing so, the requirements for satisfying differential privacy for a given privacy budget can be reduced by several orders of magnitude, thereby leading to substantial improvements in utility. To illustrate our proposed approach, we consider a dataset comprised of over 26,000 cancer-related deaths from the Commonwealth of Pennsylvania belonging to over 47,000 combinations of cause-of-death and demographic variables such as age, race, sex, and county-of-residence and demonstrate the proposed framework’s ability to preserve features such as geographic, urban/rural, and racial disparities present in the true data. 
    more » « less
  2. Differential privacy (DP) data synthesizers are increasingly proposed to afford public release of sensitive information, offering theoretical guarantees for privacy (and, in some cases, utility), but limited empirical evidence of utility in practical settings. Utility is typically measured as the error on representative proxy tasks, such as descriptive statistics, multivariate correlations, the accuracy of trained classifiers, or performance over a query workload. The ability for these results to generalize to practitioners' experience has been questioned in a number of settings, including the U.S. Census. In this paper, we propose an evaluation methodology for synthetic data that avoids assumptions about the representativeness of proxy tasks, instead measuring the likelihood that published conclusions would change had the authors used synthetic data, a condition we call epistemic parity. Our methodology consists of reproducing empirical conclusions of peer-reviewed papers on real, publicly available data, then re-running these experiments a second time on DP synthetic data and comparing the results. 
    more » « less
  3. Differential privacy (DP) data synthesizers are increasingly proposed to afford public release of sensitive information, offering theoretical guarantees for privacy (and, in some cases, utility), but limited empirical evidence of utility in practical settings. Utility is typically measured as the error on representative proxy tasks, such as descriptive statistics, multivariate correlations, the accuracy of trained classifiers, or performance over a query workload. The ability for these results to generalize to practitioners' experience has been questioned in a number of settings, including the U.S. Census. In this paper, we propose an evaluation methodology for synthetic data that avoids assumptions about the representativeness of proxy tasks, instead measuring the likelihood that published conclusions would change had the authors used synthetic data, a condition we call epistemic parity. Our methodology consists of reproducing empirical conclusions of peer-reviewed papers on real, publicly available data, then re-running these experiments a second time on DP synthetic data and comparing the results. We instantiate our methodology over a benchmark of recent peer-reviewed papers that analyze public datasets in the ICPSR social science repository. We model quantitative claims computationally to automate the experimental workflow, and model qualitative claims by reproducing visualizations and comparing the results manually. We then generate DP synthetic datasets using multiple state-of-the-art mechanisms, and estimate the likelihood that these conclusions will hold. We find that, for reasonable privacy regimes, state-of-the-art DP synthesizers are able to achieve high epistemic parity for several papers in our benchmark. However, some papers, and particularly some specific findings, are difficult to reproduce for any of the synthesizers. Given these results, we advocate for a new class of mechanisms that can reorder the priorities for DP data synthesis: favor stronger guarantees for utility (as measured by epistemic parity) and offer privacy protection with a focus on application-specific threat models and risk-assessment. 
    more » « less
  4. Large corporations, government entities and institutions such as hospitals and census bureaus routinely collect our personal and sensitive information for providing services. A key technological challenge is designing algorithms for these services that provide useful results, while simultaneously maintaining the privacy of the individuals whose data are being shared. Differential privacy (DP) is a cryptographically motivated and mathematically rigorous approach for addressing this challenge. Under DP, a randomized algorithm provides privacy guarantees by approximating the desired functionality, leading to a privacy–utility trade-off. Strong (pure DP) privacy guarantees are often costly in terms of utility. Motivated by the need for a more efficient mechanism with better privacy–utility trade-off, we propose Gaussian FM, an improvement to the functional mechanism (FM) that offers higher utility at the expense of a weakened (approximate) DP guarantee. We analytically show that the proposed Gaussian FM algorithm can offer orders of magnitude smaller noise compared to the existing FM algorithms. We further extend our Gaussian FM algorithm to decentralized-data settings by incorporating the CAPE protocol and propose capeFM. Our method can offer the same level of utility as its centralized counterparts for a range of parameter choices. We empirically show that our proposed algorithms outperform existing state-of-the-art approaches on synthetic and real datasets. 
    more » « less
  5. We consider the problem of population density estimation based on location data crowdsourced from mobile devices, using kernel density estimation (KDE). In a conventional, centralized setting, KDE requires mobile users to upload their location data to a server, thus raising privacy concerns. Here, we propose a Federated KDE framework for estimating the user population density, which not only keeps location data on the devices but also provides probabilistic privacy guarantees against a malicious server that tries to infer users' location. Our approach Federated random Fourier feature (RFF) KDE leverages a random feature representation of the KDE solution, in which each user's information is irreversibly projected onto a small number of spatially delocalized basis functions, making precise localization impossible while still allowing population density estimation. We evaluate our method on both synthetic and real-world datasets, and we show that it achieves a better utility (estimation performance)-vs-privacy (distance between inferred and true locations) tradeoff, compared to state-of-the-art baselines (e.g., GeoInd). We also vary the number of basis functions per user, to further improve the privacy-utility trade-off, and we provide analytical bounds on localization as a function of areal unit size and kernel bandwidth. 
    more » « less