skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards Strengthening the Security of Healthcare Devices using Secure Configuration Provenance
In modern healthcare, smart medical devices are used to ensure better and informed patient care. Such devices have the capability to connect to and communicate with the hospital's network or a mobile application over wi-fi or Bluetooth, allowing doctors to remotely configure them, exchange data, or update the firmware. For example, Cardiovascular Implantable Electronic Devices (CIED), more commonly known as Pacemakers, are increasingly becoming smarter, connected to the cloud or healthcare information systems, and capable of being programmed remotely. Healthcare providers can upload new configurations to such devices to change the treatment. Such configurations are often exchanged, reused, and/or modified to match the patient's specific health scenario. Such capabilities, unfortunately, come at a price. Malicious entities can provide a faulty configuration to such devices, leading to the patient's death. Any update to the state or configuration of such devices must be thoroughly vetted before applying them to the device. In case of any adverse events, we must also be able to trace the lineage and propagation of the faulty configuration to determine the cause and liability issues. In a highly distributed environment such as today's hospitals, ensuring the integrity of configurations and security policies is difficult and often requires a complex setup. As configurations propagate, traditional access control and authentication of the healthcare provider applying the configuration is not enough to prevent installation of malicious configurations. In this paper, we argue that a provenance-based approach can provide an effective solution towards hardening the security of such medical devices. In this approach, devices would maintain a verifiable provenance chain that would allow assessing not just the current state, but also the past history of the configuration of the device. Also, any configuration update would be accompanied by its own secure provenance chain, allowing verification of the origin and lineage of the configuration. The ability to protect and verify the provenance of devices and configurations would lead to better patient care, prevent malfunction of the device due to malicious configurations, and allow after-the-fact investigation of device configuration issues. In this paper, we advocate the benefits of such an approach and sketch the requirements, implementation challenges, and deployment strategies for such a provenance-based system.  more » « less
Award ID(s):
1642078
PAR ID:
10400174
Author(s) / Creator(s):
Date Published:
Journal Name:
2022 IEEE International Conference on Digital Health (ICDH)
Page Range / eLocation ID:
228 to 233
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Smart hospital patient rooms incorporate various smart devices to allow digital control of the entertainment --- such as TV and soundbar --- and the environment --- including lights, blinds, and thermostat. This technology can benefit patients by providing a more accessible, engaging, and personalized approach to their care. Many patients arrive at a rehabilitation hospital because they suffered a life-changing event such as a spinal cord injury or stroke. It can be challenging for patients to learn to cope with the changed abilities that are the new norm in their lives. This study explores ways smart patient rooms can support rehabilitation education to prepare patients for life outside the hospital's care. We conducted 20 contextual inquiries and four interviews with rehabilitation educators as they performed education sessions with patients and informal caregivers. Using thematic analysis, our findings offer insights into how smart patient rooms could revolutionize patient education by fostering better engagement with educational content, reducing interruptions during sessions, providing more agile education content management, and customizing therapy elements for each patient's unique needs. Lastly, we discuss design opportunities for future smart patient room implementations for a better educational experience in any healthcare context. 
    more » « less
  2. null (Ed.)
    Smart bracelets able to interpret the wearer's emotional state and communicate it to a remote decision-support facility will have broad applications in healthcare, elder care, the military, and other fields. While there are existing commercial embedded devices, such as the Apple Watch, that have health-monitoring sensors, such devices cannot sufficiently support a real-time health-monitoring system with battery-efficient remote data delivery. Ongoing R&D is developing solutions capable of monitoring multiple psycho-physiological signals. Possible hardware configurations include wrist-worn devices and sensors across an augmented reality headset (e.g., HoloLens 2). The device should carry an array of sensors of psycho-physiological signals, including a galvanic skin response sensor, motion sensor, skin temperature sensor, and a heart rate sensor. Output from these sensors can be intelligently fused to monitor the affective state and to determine specific trigger events for the wearer. To enable real-time remote monitoring applications, the device needs to be low-power to allow persistent monitoring while prolonging usage before recharging. For many applications, specialized sensor arrays are required, e.g. a galvanic skin response sensor. An application-flexible device would allow adding/removing sensors and would provide a choice of communication modules (e.g., Bluetooth 5.0 low-energy vs ZigBee). Appropriate configurations of the device would support applications in military health monitoring, drug-addiction mitigation, autistic trigger monitoring, and augmented reality exploration. A configuration example is: motion sensors (3-axis accelerometers, gyroscopes, and magnetometers to track steps, falls, and energy usage), a heart-rate sensor (e.g., an optical-based heart rate sensor with a single monitoring zone using the process of photoplethysmography (PPS)), at least a Bluetooth 5.0 (but a different communication device may be needed depending on the use case), and flash memory to temporarily store data when the device is not remotely communicating. The wearables field has greatly advanced in the quality of sensors; the fusion of multi-sensor data is the current frontier. 
    more » « less
  3. This paper presents a novel framework for creating a recoverable rare disease patient identity system using blockchain and smart contracts, decentralized identifiers (DIDs), and the InterPlanetary File System (IPFS). Smart contracts are executable code that can be written into decentralized storage such as blockchains in order to enable tamper-proof transactions of data. DIDs provide a secure, decentralized, and extensible way to create, store, and manage digital identities, while IPFS provides a distributed, immutable, and secure storage system for patient identities. Utilizing these technologies with smart contracts, we created a framework to store persistent medical records of patients. Smart contracts additionally allow account recovery without the use of any centralized authority. The framework enables healthcare providers to securely access a patient's data while maintaining the patient's ownership of their data. The paper explores the advantages of using a decentralized identity system and highlights the potential of this approach to improve the security and universality of medical records for patients with rare diseases. 
    more » « less
  4. The continuous evolution of the IoT paradigm has been extensively applied across various application domains, including air traffic control, education, healthcare, agriculture, transportation, smart home appliances, and others. Our primary focus revolves around exploring the applications of IoT, particularly within healthcare, where it assumes a pivotal role in facilitating secure and real-time remote patient-monitoring systems. This innovation aims to enhance the quality of service and ultimately improve people’s lives. A key component in this ecosystem is the Healthcare Monitoring System (HMS), a technology-based framework designed to continuously monitor and manage patient and healthcare provider data in real time. This system integrates various components, such as software, medical devices, and processes, aimed at improvi1g patient care and supporting healthcare providers in making well-informed decisions. This fosters proactive healthcare management and enables timely interventions when needed. However, data transmission in these systems poses significant security threats during the transfer process, as malicious actors may attempt to breach security protocols.This jeopardizes the integrity of the Internet of Medical Things (IoMT) and ultimately endangers patient safety. Two feature sets—biometric and network flow metric—have been incorporated to enhance detection in healthcare systems. Another major challenge lies in the scarcity of publicly available balanced datasets for analyzing diverse IoMT attack patterns. To address this, the Auxiliary Classifier Generative Adversarial Network (ACGAN) was employed to generate synthetic samples that resemble minority class samples. ACGAN operates with two objectives: the discriminator differentiates between real and synthetic samples while also predicting the correct class labels. This dual functionality ensures that the discriminator learns detailed features for both tasks. Meanwhile, the generator produces high-quality samples that are classified as real by the discriminator and correctly labeled by the auxiliary classifier. The performance of this approach, evaluated using the IoMT dataset, consistently outperforms the existing baseline model across key metrics, including accuracy, precision, recall, F1-score, area under curve (AUC), and confusion matrix results. 
    more » « less
  5. Smart Internet of Healthcare Things (IoHT) have the potential to transform patient care dramatically at reduced cost. The reality, however, is that there are serious security and privacy concerns that prevent this goal from being accomplished. The vast amounts of data being generated need to be kept secure to prevent harm to patients' health and privacy. For example, a cyberattack on heart rates data could cause patients to be over- or under-prescribed, causing severe consequences, including death. In this new environment, not ensuring a proper digital chain of custody leads to digital forensics challenges that could impact a criminal or malpractice investigation. This project explores enhancements needed to ensure security and privacy when IoHT are to be used in healthcare. A model is proposed to ensure a secure digital chain of custody for IoHT using database auditing techniques. The current status of the proposed concept and future directions are also discussed. 
    more » « less