Abstract A new class of core–shell adsorbents has been created by electrospun metal–organic framework (MOF) particles embedded in polymer nanofibers, which have provided many unique properties compared to the existing MOF coating technologies. For the first time, we demonstrate the improved adsorption selectivity of CO2over N2using electrospun polymer/ZIF‐8 adsorbents in experiments. Furthermore, an analytical model based on the assumption that the diffusivity in core is 10 times higher than that in shell is developed to describe the theory of improved selectivity for core–shell adsorbents that is validated against a more accurate finite element model developed in COMSOL. Our model shows three regimes including exclusive shell uptake, linear core uptake, and asymptotic core uptake. These regimes are related to material properties and uptake times, which could be used as design criteria to balance core stability, maximum selectivity, and maximum uptake. An advanced HAADF STEM tomography (Movie ) shows that the shell thickness in the case of polymer/ZIF‐8 is on the order of 10 nm, allowing the regime of maximum selectivity to be realized. Kinetically limited adsorption tests at 45°C demonstrate that these composite fibers can perform in a regime of selectivity and uptake for the separation of CO2and N2that is unobtainable by either the MOF or fiber independently, showing a great potential for postcombustion CO2capture.
more »
« less
Designing optimal core–shell MOFs for direct air capture
Metal–organic frameworks (MOFs), along with other novel adsorbents, are frequently proposed as candidate materials to selectively adsorb CO 2 for carbon capture processes. However, adsorbents designed to strongly bind CO 2 nearly always bind H 2 O strongly (sometimes even more so). Given that water is present in significant quantities in the inlet streams of most carbon capture processes, a method that avoids H 2 O competition for the CO 2 binding sites would be technologically valuable. In this paper, we consider a novel core–shell MOF design strategy, where a high-CO 2 -capacity MOF “core” is protected from competitive H 2 O-binding via a MOF “shell” that has very slow water diffusion. We consider a high-frequency adsorption/desorption cycle that regenerates the adsorbents before water can pass through the shell and enter the core. To identify optimal core–shell MOF pairs, we use a combination of experimental measurements, computational modeling, and multiphysics modeling. Our library of MOFs is created from two starting MOFs-UiO-66 and UiO-67-augmented with 30 possible functional group variations, yielding 1740 possible core–shell MOF pairs. After defining a performance score to rank these pairs, we identified 10 core–shell MOF candidates that significantly outperform any of the MOFs functioning alone.
more »
« less
- Award ID(s):
- 1653375
- PAR ID:
- 10400176
- Date Published:
- Journal Name:
- Nanoscale
- Volume:
- 14
- Issue:
- 43
- ISSN:
- 2040-3364
- Page Range / eLocation ID:
- 16085 to 16096
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Carbon capture and sequestration (CCS) from industrial point sources and direct air capture are necessary to combat global climate change. A particular challenge faced by amine‐based sorbents—the current leading technology—is poor stability towards O2. Here, we demonstrate that CO2chemisorption in γ‐cylodextrin‐based metal–organic frameworks (CD‐MOFs) occurs via HCO3−formation at nucleophilic OH−sites within the framework pores, rather than via previously proposed pathways. The new framework KHCO3CD‐MOF possesses rapid and high‐capacity CO2uptake, good thermal, oxidative, and cycling stabilities, and selective CO2capture under mixed gas conditions. Because of its low cost and performance under realistic conditions, KHCO3CD‐MOF is a promising new platform for CCS. More broadly, our work demonstrates that the encapsulation of reactive OH−sites within a porous framework represents a potentially general strategy for the design of oxidation‐resistant adsorbents for CO2capture.more » « less
-
Abstract Carbon dioxide capture technologies are set to play a vital role in mitigating the current climate crisis. Solid‐state17O NMR spectroscopy can provide key mechanistic insights that are crucial to effective sorbent development. In this work, we present the fundamental aspects and complexities for the study of hydroxide‐based CO2capture systems by17O NMR. We perform static density functional theory (DFT) NMR calculations to assign peaks for general hydroxide CO2capture products, finding that17O NMR can readily distinguish bicarbonate, carbonate and water species. However, in application to CO2binding in two test case hydroxide‐functionalised metal‐organic frameworks (MOFs) – MFU‐4l and KHCO3‐cyclodextrin‐MOF, we find that a dynamic treatment is necessary to obtain agreement between computational and experimental spectra. We therefore introduce a workflow that leverages machine‐learning force fields to capture dynamics across multiple chemical exchange regimes, providing a significant improvement on static DFT predictions. In MFU‐4l, we parameterise a two‐component dynamic motion of the bicarbonate motif involving a rapid carbonyl seesaw motion and intermediate hydroxyl proton hopping. For KHCO3‐CD‐MOF, we combined experimental and modelling approaches to propose a new mixed carbonate‐bicarbonate binding mechanism and thus, we open new avenues for the study and modelling of hydroxide‐based CO2capture materials by17O NMR.more » « less
-
Polymeric membranes are being studied for their potential use in post-combustion carbon capture on the premise that they could dramatically lower costs relative to mature technologies available today. Mixed matrix membranes (MMMs) are advanced materials formed by combining polymers with inorganic particles. Using metal–organic frameworks (MOFs) as the inorganic particles has been shown to improve selectivity and permeability over pure polymers. We have carried out high-throughput atomistic simulations on 112 888 real and hypothetical metal–organic framework structures in order to calculate their CO 2 permeabilities and CO 2 /N 2 selectivities. The CO 2 /H 2 O sorption selectivity of 2 017 real MOFs was evaluated using the H 2 O sorption data of Li et al. (S. Li, Y. G. Chung and R. Q. Snurr, Langmuir , 2016, 32 , 10368–10376). Using experimentally measured polymer properties and the Maxwell model, we predicted the properties of all of the hypothetical mixed matrix membranes that could be made by combining the metal–organic frameworks with each of nine polymers, resulting in over one million possible MMMs. The predicted gas permeation of MMMs was compared to published gas permeation data in order to validate the methodology. We then carried out twelve individually optimized techno-economic evaluations of a three-stage membrane-based capture process. For each evaluation, capture process variables such as flow rate, capture fraction, pressure and temperature conditions were optimized and the resultant cost data were interpolated in order to assign cost based on membrane selectivity and permeability. This work makes a connection from atomistic simulation all the way to techno-economic evaluation for a membrane-based carbon capture process. We find that a large number of possible mixed matrix membranes are predicted to yield a cost of carbon capture less than $50 per tonne CO 2 removed, and a significant number of MOFs so identified have favorable CO 2 /H 2 O sorption selectivity.more » « less
-
Metal–organic frameworks (MOFs), with their unique porous structures and versatile functionality, have emerged as promising materials for the adsorption, separation, and storage of diverse molecular species. In this study, we investigate water adsorption in MOF-808, a prototypical MOF that shares the same secondary building unit (SBU) as UiO-66, and elucidate how differences in topology and connectivity between the two MOFs influence the adsorption mechanism. To this end, molecular dynamics simulations were performed to calculate several thermodynamic and dynamical properties of water in MOF-808 as a function of relative humidity (RH), from the initial adsorption step to full pore filling. At low RH, the μ3-OH groups of the SBUs form hydrogen bonds with the initial water molecules entering the pores, which triggers the filling of these pores before the μ3-OH groups in other pores become engaged in hydrogen bonding with water molecules. Our analyses indicate that the pores of MOF-808 become filled by water sequentially as the RH increases. A similar mechanism has been reported for water adsorption in UiO-66. Despite this similarity, our study highlights distinct thermodynamic properties and framework characteristics that influence the adsorption process differently in MOF-808 and UiO-66.more » « less
An official website of the United States government

