Habitat degradation can increase zoonotic disease risks by altering infection dynamics in wildlife and increasing wildlife–human interactions. Bats are an important taxonomic group to consider these effects, because they harbour many relevant zoonotic viruses and have species‐ and context‐dependent responses to degradation that could affect zoonotic virus dynamics. Yet our understanding of the associations between habitat degradation and bat virus prevalence and seroprevalence are limited to a small number of studies, which often differ in the bats or viruses sampled, the study region, and methodology. To develop a broad understanding of the associations between bat viruses and habitat degradation, we conducted an initial phylogenetic meta‐analysis that combines published prevalence and seroprevalence (‘(sero)prevalence') with remote‐sensing habitat degradation data. Our dataset includes 588 unique records of (sero)prevalence across 16 studies, 64 bat species, and five virus families. We quantified the overall strength and direction of the relationship between habitat degradation and bat virus outcomes and tested how this relationship is moderated by the time between habitat degradation and bat sampling and by ecological traits of bat hosts while controlling for phylogenetic non‐independence among bat species. We found no effect of degradation on prevalence overall, although a weak effect may exist when forest loss occurs the year prior to bat sampling. In contrast, we detected a negative but weak association between degradation and seroprevalence overall that was strengthened when forest loss occurred the year prior to bat sampling. No bat traits that we investigated interacted with habitat degradation to impact virus outcomes, suggesting observed trends are independent of these traits. Biases in our initial dataset highlight opportunities for future work; prevalence was highly zero‐inflated, and seroprevalence was dominated by
The dilution effect hypothesis posits that increasing biodiversity reduces infectious disease transmission. Here, we propose that habitat quality might modulate this negative biodiversity–disease relationship. Habitat may influence pathogen prevalence directly by affecting host traits like nutrition and immune response (we coined the term “habitat–disease relationship” to describe this phenomenon) or indirectly by changing host biodiversity (biodiversity–disease relationship). We used a path model to test the relative strength of links between habitat, biodiversity, and pathogen prevalence in a pollinator–virus system. High‐quality habitat metrics were directly associated with viral prevalence, providing evidence for a habitat–disease relationship. However, the strength and direction of specific habitat effects on viral prevalence varied based on the characteristics of the habitat, host, and pathogen. In general, more natural area and richness of land‐cover types were directly associated with increased viral prevalence, whereas greater floral density was associated with reduced viral prevalence. More natural habitat was also indirectly associated with reduced prevalence of two key viruses (black queen cell virus and deformed wing virus) via increased pollinator species richness, providing evidence for a habitat‐mediated dilution effect on viral prevalence. Biodiversity–disease relationships varied across viruses, with the prevalence of sacbrood virus not being associated with any habitat quality or pollinator community metrics. Across all viruses and hosts, habitat–disease and biodiversity–disease paths had effects of similar magnitude on viral prevalence. Therefore, habitat quality is a key driver of variation in pathogen prevalence among communities via both direct habitat–disease and indirect biodiversity–disease pathways, though the specific patterns varied among different viruses and host species. Critically, habitat–disease relationships could either contribute to or obscure dilution effects in natural systems depending on the relative strength and direction of the habitat–disease and biodiversity–disease pathways in that host–pathogen system. Therefore, habitat may be an important driver in the complex interactions between hosts and pathogens.
more » « less- Award ID(s):
- 2134910
- PAR ID:
- 10400196
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology
- Volume:
- 104
- Issue:
- 2
- ISSN:
- 0012-9658
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Desmodus rotundus and rabies virus. These findings and subsequent analyses will improve our understanding of how global change affects host–pathogen dynamics. -
Abstract Knowledge of viral biodiversity within insects, particularly within ants, is extremely limited with only a few environmental viruses from invasive ant species identified to date. This study documents and explores the viral communities in ants. We comprehensively profile the metagenomes of a phylogenetically broad group of 35 ant species with varied ecological traits and report the discovery of 3710 novel and unique ant‐associated viral genomes. These previously unknown viruses discovered within this study constitute over 95% of all currently described ant viruses, significantly increasing our knowledge of the ant virosphere. The identified RNA and DNA viruses fill gaps in insect‐associated viral phylogenies and uncover evolutionary histories characterized by both frequent host switching and co‐divergence. Many ants also host diverse bacterial communities, and we discovered that approximately one‐third of these new ant‐associated viruses are bacteriophages. Two ecological categories, bacterial abundance in the host and habitat degradation are both correlated with ant viral diversity and help to structure viral communities within ants. These data demonstrate that the ant virosphere is remarkably diverse phylogenetically and genomically and provide a substantial foundation for studies in virus ecology and evolution within eukaryotes. We highlight the importance of studying insect‐associated viruses in natural ecosystems in order to more thoroughly and effectively understand host‐microbe evolutionary dynamics.
-
Abstract A growing body of literature links resources of hosts to their risk of infectious disease. Yet most hosts encounter multiple pathogens, and projections of disease risk based on resource availability could be fundamentally wrong if they do not account for interactions among pathogens within hosts. Here, we measured infection risk of grass hosts (
Avena sativa ) exposed to three naturally co‐occurring viruses either singly or jointly (barley and cereal yellow dwarf viruses [B/CYDVs]: CYDV‐RPV, BYDV‐PAV, and BYDV‐SGV) along experimental gradients of nitrogen and phosphorus supply. We asked whether disease risk (i.e., infection prevalence) differed in single versus co‐inoculations, and whether these differences varied with rates and ratios of nitrogen and phosphorus supply. In single inoculations, the viruses did not respond strongly to nitrogen or phosphorus. However, in co‐inoculations, we detected illustrative cases of 1) resource‐dependent antagonism (lower prevalence of RPV with increasing N; possibly due to competition), 2) resource‐dependent facilitation (higher prevalence of SGV with decreasing N:P; possibly due to immunosuppression), and 3) weak or no interactions within hosts (for PAV). Together, these within‐host interactions created emergent patterns for co‐inoculated hosts, with both infection prevalence and viral richness increasing with the combination of low nitrogen and high phosphorus supply. We demonstrate that knowledge of multiple pathogens is essential for predicting disease risk from host resources and that projections of risk that fail to acknowledge resource‐dependent interactions within hosts could be qualitatively wrong. Expansions of theory from community ecology theory may help anticipate such relationships by linking host resources to diverse pathogen communities. -
Abstract For decades, people have reduced the transmission of pathogens by adding low‐quality hosts to managed environments like agricultural fields. More recently, there has been interest in whether similar ‘dilution effects’ occur in natural disease systems, and whether these effects are eroded as diversity declines. For some pathogens of plants, humans and other animals, the highest‐quality hosts persist when diversity is lost, so that high‐quality hosts dominate low‐diversity communities, resulting in greater pathogen transmission. Meta‐analyses reveal that these natural dilution effects are common. However, studying them remains challenging due to limitations on the ability of researchers to manipulate many disease systems experimentally, difficulties of acquiring data on host quality and confusion about what should and should not be considered a dilution effect. Because dilution effects are widely used in managed disease systems and have been documented in a variety of natural disease systems, their existence should not be considered controversial. Important questions remain about how frequently they occur and under what conditions to expect them. There is also ongoing confusion about their relationships to both pathogen spillover and general biogeographical correlations between diversity and disease, which has resulted in an inconsistent and confusing literature. Progress will require rigorous and creative research.
-
Abstract Plant disease often increases with N, decreases with CO2, and increases as biodiversity is lost (i.e., the dilution effect). Additionally, all these factors can indirectly alter disease by changing host biomass and hence density-dependent disease transmission. Yet over long periods of time as communities undergo compositional changes, these biomass-mediated pathways might fade, intensify, or even reverse in direction. Using a field experiment that has manipulated N, CO2, and species richness for over 20 years, we compared severity of a specialist rust fungus (
Puccinia andropogonis ) on its grass host (Andropogon gerardii ) shortly after the experiment began (1999) and twenty years later (2019). Between these two sampling periods, two decades apart, we found that disease severity consistently increased with N and decreased with CO2. However, the relationship between diversity and disease reversed from a dilution effect in 1999 (more severe disease in monocultures) to an amplification effect in 2019 (more severe disease in mixtures). The best explanation for this reversal centered on host density (i.e., aboveground biomass), which was initially highest in monoculture, but became highest in mixtures two decades later. Thus, the diversity-disease pattern reversed, but disease consistently increased with host biomass. These results highlight the consistency of N and CO2as drivers of plant disease in the Anthropocene and emphasize the critical role of host biomass—despite potentially variable effects of diversity—for relationships between biodiversity and disease.