Abstract The dilution effect hypothesis posits that increasing biodiversity reduces infectious disease transmission. Here, we propose that habitat quality might modulate this negative biodiversity–disease relationship. Habitat may influence pathogen prevalence directly by affecting host traits like nutrition and immune response (we coined the term “habitat–disease relationship” to describe this phenomenon) or indirectly by changing host biodiversity (biodiversity–disease relationship). We used a path model to test the relative strength of links between habitat, biodiversity, and pathogen prevalence in a pollinator–virus system. High‐quality habitat metrics were directly associated with viral prevalence, providing evidence for a habitat–disease relationship. However, the strength and direction of specific habitat effects on viral prevalence varied based on the characteristics of the habitat, host, and pathogen. In general, more natural area and richness of land‐cover types were directly associated with increased viral prevalence, whereas greater floral density was associated with reduced viral prevalence. More natural habitat was also indirectly associated with reduced prevalence of two key viruses (black queen cell virus and deformed wing virus) via increased pollinator species richness, providing evidence for a habitat‐mediated dilution effect on viral prevalence. Biodiversity–disease relationships varied across viruses, with the prevalence of sacbrood virus not being associated with any habitat quality or pollinator community metrics. Across all viruses and hosts, habitat–disease and biodiversity–disease paths had effects of similar magnitude on viral prevalence. Therefore, habitat quality is a key driver of variation in pathogen prevalence among communities via both direct habitat–disease and indirect biodiversity–disease pathways, though the specific patterns varied among different viruses and host species. Critically, habitat–disease relationships could either contribute to or obscure dilution effects in natural systems depending on the relative strength and direction of the habitat–disease and biodiversity–disease pathways in that host–pathogen system. Therefore, habitat may be an important driver in the complex interactions between hosts and pathogens.
more »
« less
Dilution effects in disease ecology
Abstract For decades, people have reduced the transmission of pathogens by adding low‐quality hosts to managed environments like agricultural fields. More recently, there has been interest in whether similar ‘dilution effects’ occur in natural disease systems, and whether these effects are eroded as diversity declines. For some pathogens of plants, humans and other animals, the highest‐quality hosts persist when diversity is lost, so that high‐quality hosts dominate low‐diversity communities, resulting in greater pathogen transmission. Meta‐analyses reveal that these natural dilution effects are common. However, studying them remains challenging due to limitations on the ability of researchers to manipulate many disease systems experimentally, difficulties of acquiring data on host quality and confusion about what should and should not be considered a dilution effect. Because dilution effects are widely used in managed disease systems and have been documented in a variety of natural disease systems, their existence should not be considered controversial. Important questions remain about how frequently they occur and under what conditions to expect them. There is also ongoing confusion about their relationships to both pathogen spillover and general biogeographical correlations between diversity and disease, which has resulted in an inconsistent and confusing literature. Progress will require rigorous and creative research.
more »
« less
- Award ID(s):
- 1948419
- PAR ID:
- 10366663
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Ecology Letters
- Volume:
- 24
- Issue:
- 11
- ISSN:
- 1461-023X
- Page Range / eLocation ID:
- p. 2490-2505
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT To explain patterns between anthropogenic loss of species diversity and the rise in the number of novel zoonotic diseases, the “dilution effect” hypothesis predicts that with lower species diversity, infection risk will increase. The underlying mechanisms have been largely investigated in systems where pathogen transmission is vector‐borne or environmental. Relatively less research has been conducted in systems where transmission is direct, such as with orthohantaviruses (hereafter hantaviruses) and their rodent reservoir hosts. These systems are commonly cited as supporting a negative diversity‐disease pattern. To motivate empirical research on underlying mechanisms driving this pattern, we extend a mechanistic framework that links species diversity and infection prevalence of directly transmitted zoonotic pathogens by using rodent‐hantavirus systems in the Americas as models. Additionally, we summarize empirical studies, synthesize mechanistic evidence, and identify knowledge gaps. Our findings suggest that host regulation is a key mechanism likely to drive diversity‐disease patterns in rodent‐hantavirus systems of the Americas. Other mechanisms have received less empirical support but also less attention. Although host regulation likely functions via density‐dependent transmission, and can thus change contact rates among hosts, consequences to other mechanisms have been neglected. As observed in rodent‐hantavirus systems in the Americas, we propose that for a negative diversity‐disease pattern to manifest, the primary reservoir host species should be resilient to anthropogenic disturbance but also vulnerable to competition, predation, or both, and the “diversity” measure should be associated with host density.more » « less
-
Abstract In many natural systems, diverse host communities can reduce disease risk, though less is known about the mechanisms driving this “dilution effect.” We relate feedback theory, which focuses on pathogen‐mediated coexistence, to mechanisms of dilution derived from epidemiological models, with the central goal of gaining insights into host–pathogen interactions in a community context. We first compare the origin, structure, and application of epidemiological and feedback models. We then explore the mechanisms of dilution, which are grounded in single‐pathogen, single‐host epidemiological models, from the perspective of feedback theory. We also draw on feedback theory to examine how coinfecting pathogens, and pathogens that vary along a host specialist–generalist continuum, apply to dilution theory. By identifying synergies among the feedback and epidemiological approaches, we reveal ways in which organisms occupying different trophic levels contribute to diversity–disease relationships. Additionally, using feedbacks to distinguish dilution in disease incidence from dilution in the net effect of disease on host fitness allows us to articulate conditions under which definitions of dilution may not align. After ascribing dilution mechanisms to macro‐ or microorganisms, we propose ways in which each contributes to diversity–disease and productivity–diversity relationships. Our analyses lead to predictions that can guide future research efforts.more » « less
-
Abstract Productivity benefits from diversity can arise when compatible pathogen hosts are buffered by unrelated neighbors, diluting pathogen impacts. However, the generality of pathogen dilution has been controversial and rarely tested within biodiversity manipulations. Here, we test whether soil pathogen dilution generates diversity- productivity relationships using a field biodiversity-manipulation experiment, greenhouse assays, and feedback modeling. We find that the accumulation of specialist pathogens in monocultures decreases host plant yields and that pathogen dilution predicts plant productivity gains derived from diversity. Pathogen specialization predicts the strength of the negative feedback between plant species in greenhouse assays. These feedbacks significantly predict the overyielding measured in the field the following year. This relationship strengthens when accounting for the expected dilution of pathogens in mixtures. Using a feedback model, we corroborate that pathogen dilution drives overyielding. Combined empirical and theoretical evidence indicate that specialist pathogen dilution generates overyielding and suggests that the risk of losing productivity benefits from diversity may be highest where environmental change decouples plant-microbe interactions.more » « less
-
Abstract Host competence, or how well an individual transmits pathogens, varies substantially within and among animal populations. As this variation can alter the course of epidemics and epizootics, revealing its underlying causes will help predict and control the spread of disease. One host trait that could drive heterogeneity in competence is host tolerance, which minimizes fitness losses during infection without decreasing pathogen load. In many cases, tolerance should increase competence by extending infectious periods and enabling behaviors that facilitate contact among hosts. However, we argue that the links between tolerance and competence are more varied. Specifically, the different physiological and behavioral mechanisms by which hosts achieve tolerance should have a range of effects on competence, enhancing the ability to transmit pathogens in some circumstances and impeding it in others. Because tissue-based pathology (damage) that reduces host fitness is often critical for pathogen transmission, we focus on two mechanisms that can underlie tolerance at the tissue level: damage-avoidance and damage-repair. As damage-avoidance reduces transmission-enhancing pathology, this mechanism is likely to decrease host competence and pathogen transmission. In contrast, damage-repair does not prevent transmission-relevant pathology from occurring. Rather, damage-repair provides new, healthy tissues that pathogens can exploit, likely extending the infectious period and increasing host competence. We explore these concepts through graphical models and present three disease systems in which damage-avoidance and damage-repair alter host competence in the predicted directions. Finally, we suggest that by incorporating these links, future theoretical studies could provide new insights into infectious disease dynamics and host–pathogen coevolution.more » « less
An official website of the United States government
