One of the most common types of models that helps us to understand neuron behavior is based on the Hodgkin–Huxley ion channel formulation (HH model). A major challenge with inferring parameters in HH models is non-uniqueness: many different sets of ion channel parameter values produce similar outputs for the same input stimulus. Such phenomena result in an objective function that exhibits multiple modes (i.e., multiple local minima). This non-uniqueness of local optimality poses challenges for parameter estimation with many algorithmic optimization techniques. HH models additionally have severe non-linearities resulting in further challenges for inferring parameters in an algorithmic fashion. To address these challenges with a tractable method in high-dimensional parameter spaces, we propose using a particular Markov chain Monte Carlo (MCMC) algorithm, which has the advantage of inferring parameters in a Bayesian framework. The Bayesian approach is designed to be suitable for multimodal solutions to inverse problems. We introduce and demonstrate the method using a three-channel HH model. We then focus on the inference of nine parameters in an eight-channel HH model, which we analyze in detail. We explore how the MCMC algorithm can uncover complex relationships between inferred parameters using five injected current levels. The MCMC method provides as a result a nine-dimensional posterior distribution, which we analyze visually with solution maps or landscapes of the possible parameter sets. The visualized solution maps show new complex structures of the multimodal posteriors, and they allow for selection of locally and globally optimal value sets, and they visually expose parameter sensitivities and regions of higher model robustness. We envision these solution maps as enabling experimentalists to improve the design of future experiments, increase scientific productivity and improve on model structure and ideation when the MCMC algorithm is applied to experimental data.
more »
« less
Modeling of single neurons: low-dimensional models
The classical Hodgkin-Huxley (HH) point-neuron model of action potential generation is four-dimensional. It consists of four ordinary differential equations describing the dynamics of the membrane potential and three gating variables associated to a transient sodium and a delayed-rectifier potassium ionic currents. Conductance-based models of HH type are higher-dimensional extensions of the classical HH model. They include a number of supplementary state variables associated with other ionic current types, and are able to describe additional phenomena such as subthreshold oscillations, mixed-mode oscillations (subthreshold oscillations interspersed with spikes), clustering and bursting. In this manuscript we discuss biophysically plausible and phenomenological reduced models that preserve the biophysical and/or dynamic description of models of HH type and the ability to produce complex phenomena, but the number of effective dimensions (state variables) is lower. We describe several representative models. We also describe systematic and heuristic methods of deriving reduced models from models of HH type.
more »
« less
- PAR ID:
- 10400207
- Date Published:
- Journal Name:
- Biological cybernetics
- ISSN:
- 0340-1200
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Parameter estimation from observable or experimental data is a crucial stage in any modeling study. Identifiability refers to one’s ability to uniquely estimate the model parameters from the available data. Structural unidentifiability in dynamic models, the opposite of identifiability, is associated with the notion of degeneracy where multiple parameter sets produce the same pattern. Therefore, the inverse function of determining the model parameters from the data is not well defined. Degeneracy is not only a mathematical property of models, but it has also been reported in biological experiments. Classical studies on structural unidentifiability focused on the notion that one can at most identify combinations of unidentifiable model parameters. We have identified a different type of structural degeneracy/unidentifiability present in a family of models, which we refer to as the Lambda-Omega (Λ-Ω) models. These are an extension of the classical lambda-omega (λ-ω) models that have been used to model biological systems, and display a richer dynamic behavior and waveforms that range from sinusoidal to square wave to spike like. We show that the Λ-Ω models feature infinitely many parameter sets that produce identical stable oscillations, except possible for a phase shift (reflecting the initial phase). These degenerate parameters are not identifiable combinations of unidentifiable parameters as is the case in structural degeneracy. In fact, reducing the number of model parameters in the Λ-Ω models is minimal in the sense that each one controls a different aspect of the model dynamics and the dynamic complexity of the system would be reduced by reducing the number of parameters. We argue that the family of Λ-Ω models serves as a framework for the systematic investigation of degeneracy and identifiability in dynamic models and for the investigation of the interplay between structural and other forms of unidentifiability resulting on the lack of information from the experimental/observational data.more » « less
-
Abstract BackgroundSingle-cell RNA-sequencing (scRNA-seq) technologies allow for the study of gene expression in individual cells. Often, it is of interest to understand how transcriptional activity is associated with cell-specific covariates, such as cell type, genotype, or measures of cell health. Traditional approaches for this type of association mapping assume independence between the outcome variables (or genes), and perform a separate regression for each. However, these methods are computationally costly and ignore the substantial correlation structure of gene expression. Furthermore, count-based scRNA-seq data pose challenges for traditional models based on Gaussian assumptions. ResultsWe aim to resolve these issues by developing a reduced-rank regression model that identifies low-dimensional linear associations between a large number of cell-specific covariates and high-dimensional gene expression readouts. Our probabilistic model uses a Poisson likelihood in order to account for the unique structure of scRNA-seq counts. We demonstrate the performance of our model using simulations, and we apply our model to a scRNA-seq dataset, a spatial gene expression dataset, and a bulk RNA-seq dataset to show its behavior in three distinct analyses. ConclusionWe show that our statistical modeling approach, which is based on reduced-rank regression, captures associations between gene expression and cell- and sample-specific covariates by leveraging low-dimensional representations of transcriptional states.more » « less
-
One important problem in constructing the reduced dynamics of molecular systems is the accurate modeling of the non-Markovian behavior arising from the dynamics of unresolved variables. The main complication emerges from the lack of scale separations, where the reduced dynamics generally exhibits pronounced memory and non-white noise terms. We propose a data-driven approach to learn the reduced model of multi-dimensional resolved variables that faithfully retains the non-Markovian dynamics. Different from the common approaches based on the direct construction of the memory function, the present approach seeks a set of non-Markovian features that encode the history of the resolved variables and establishes a joint learning of the extended Markovian dynamics in terms of both the resolved variables and these features. The training is based on matching the evolution of the correlation functions of the extended variables that can be directly obtained from the ones of the resolved variables. The constructed model essentially approximates the multi-dimensional generalized Langevin equation and ensures numerical stability without empirical treatment. We demonstrate the effectiveness of the method by constructing the reduced models of molecular systems in terms of both one-dimensional and four-dimensional resolved variables.more » « less
-
We present a unified framework for the data-driven construction of stochastic reduced models with state-dependent memory for high-dimensional Hamiltonian systems. The method addresses two key challenges: (i) accurately modeling heterogeneous non-Markovian effects where the memory function depends on the coarse-grained (CG) variables beyond the standard homogeneous kernel, and (ii) efficiently exploring the phase space to sample both equilibrium and dynamical observables for reduced model construction. Specifically, we employ a consensus-based sampling method to establish a shared sampling strategy that enables simultaneous construction of the free energy function and collection of conditional two-point correlation functions used to learn the state-dependent memory. The reduced dynamics is formulated as an extended Markovian system, where a set of auxiliary variables, interpreted as non-Markovian features, is jointly learned to systematically approximate the memory function using only two-point statistics. The constructed model yields a generalized Langevin-type formulation with an invariant distribution consistent with the full dynamics. We demonstrate the effectiveness of the proposed framework on a two-dimensional CG model of an alanine dipeptide molecule. Numerical results on the transition dynamics between metastable states show that accurately capturing state-dependent memory is essential for predicting non-equilibrium kinetic properties, whereas the standard generalized Langevin model with a homogeneous kernel exhibits significant discrepancies.more » « less
An official website of the United States government

