skip to main content


Title: Parameter Estimation in the Age of Degeneracy and Unidentifiability
Parameter estimation from observable or experimental data is a crucial stage in any modeling study. Identifiability refers to one’s ability to uniquely estimate the model parameters from the available data. Structural unidentifiability in dynamic models, the opposite of identifiability, is associated with the notion of degeneracy where multiple parameter sets produce the same pattern. Therefore, the inverse function of determining the model parameters from the data is not well defined. Degeneracy is not only a mathematical property of models, but it has also been reported in biological experiments. Classical studies on structural unidentifiability focused on the notion that one can at most identify combinations of unidentifiable model parameters. We have identified a different type of structural degeneracy/unidentifiability present in a family of models, which we refer to as the Lambda-Omega (Λ-Ω) models. These are an extension of the classical lambda-omega (λ-ω) models that have been used to model biological systems, and display a richer dynamic behavior and waveforms that range from sinusoidal to square wave to spike like. We show that the Λ-Ω models feature infinitely many parameter sets that produce identical stable oscillations, except possible for a phase shift (reflecting the initial phase). These degenerate parameters are not identifiable combinations of unidentifiable parameters as is the case in structural degeneracy. In fact, reducing the number of model parameters in the Λ-Ω models is minimal in the sense that each one controls a different aspect of the model dynamics and the dynamic complexity of the system would be reduced by reducing the number of parameters. We argue that the family of Λ-Ω models serves as a framework for the systematic investigation of degeneracy and identifiability in dynamic models and for the investigation of the interplay between structural and other forms of unidentifiability resulting on the lack of information from the experimental/observational data.  more » « less
Award ID(s):
1608077 1715808
NSF-PAR ID:
10387689
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Mathematics
Volume:
10
Issue:
2
ISSN:
2227-7390
Page Range / eLocation ID:
170
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper describes a geometric approach to parameter identifiability analysis in models of power systems dynamics. When a model of a power system is to be compared with measurements taken at discrete times, it can be interpreted as a mapping from parameter space into a data or prediction space. Generically, model mappings can be interpreted as manifolds with dimensionality equal to the number of structurally identifiable parameters. Empirically it is observed that model mappings often correspond to bounded manifolds. We propose a new definition of practical identifiability based the topological definition of a manifold with boundary. In many ways, our proposed definition extends the properties of structural identifiability. We construct numerical approximations to geodesics on the model manifold and use the results, combined with insights derived from the mathematical form of the equations, to identify combinations of practically identifiable and unidentifiable parameters. We give several examples of application to dynamic power systems models. 
    more » « less
  2. A bstract The first measurements of elliptic flow of π ± , K ± , $$ \textrm{p}+\overline{\textrm{p}} $$ p + p ¯ , $$ {\textrm{K}}_{\textrm{S}}^0 $$ K S 0 , $$ \Lambda +\overline{\Lambda} $$ Λ + Λ ¯ , ϕ , $$ {\Xi}^{-}+{\overline{\Xi}}^{+} $$ Ξ − + Ξ ¯ + , and $$ {\varOmega}^{-}+{\overline{\varOmega}}^{+} $$ Ω − + Ω ¯ + using multiparticle cumulants in Pb–Pb collisions at $$ \sqrt{s_{\textrm{NN}}} $$ s NN = 5 . 02 TeV are resented. Results obtained with two- ( v 2 {2}) and four-particle cumulants ( v 2 {4}) are shown as a function of transverse momentum, p T , for various collision centrality intervals. Combining the data for both v 2 {2} and v 2 {4} also allows us to report the first measurements of the mean elliptic flow, elliptic flow fluctuations, and relative elliptic flow fluctuations for various hadron species. These observables probe the event-by-event eccentricity fluctuations in the initial state and the contributions from the dynamic evolution of the expanding quark–gluon plasma. The characteristic features observed in previous p T -differential anisotropic flow measurements for identified hadrons with two-particle correlations, namely the mass ordering at low p T and the approximate scaling with the number of constituent quarks at intermediate p T , are similarly present in the four-particle correlations and the combinations of v 2 {2} and v 2 {4}. In addition, a particle species dependence of flow fluctuations is observed that could indicate a significant contribution from final state hadronic interactions. The comparison between experimental measurements and CoLBT model calculations, which combine the various physics processes of hydrodynamics, quark coalescence, and jet fragmentation, illustrates their importance over a wide p T range. 
    more » « less
  3. Abstract The interaction of $$\textrm{K}^{-}$$ K - with protons is characterised by the presence of several coupled channels, systems like $${\overline{\textrm{K}}}^0$$ K ¯ 0 n and $$\uppi \Sigma $$ π Σ with a similar mass and the same quantum numbers as the $$\textrm{K}^{-}$$ K - p state. The strengths of these couplings to the $$\textrm{K}^{-}$$ K - p system are of crucial importance for the understanding of the nature of the $$\Lambda (1405)$$ Λ ( 1405 ) resonance and of the attractive $$\textrm{K}^{-}$$ K - p strong interaction. In this article, we present measurements of the $$\textrm{K}^{-}$$ K - p correlation functions in relative momentum space obtained in pp collisions at $$\sqrt{s}~=~13$$ s = 13  Te, in p–Pb collisions at $$\sqrt{s_{\textrm{NN}}}~=~5.02$$ s NN = 5.02  Te, and (semi)peripheral Pb–Pb collisions at $$\sqrt{s_{\textrm{NN}}}~=~5.02$$ s NN = 5.02  Te. The emitting source size, composed of a core radius anchored to the $$\textrm{K}^{+}$$ K + p correlation and of a resonance halo specific to each particle pair, varies between 1 and 2 fm in these collision systems. The strength and the effects of the $${\overline{\textrm{K}}}^0$$ K ¯ 0 n and $$\uppi \Sigma $$ π Σ inelastic channels on the measured $$\textrm{K}^{-}$$ K - p correlation function are investigated in the different colliding systems by comparing the data with state-of-the-art models of chiral potentials. A novel approach to determine the conversion weights $$\omega $$ ω , necessary to quantify the amount of produced inelastic channels in the correlation function, is presented. In this method, particle yields are estimated from thermal model predictions, and their kinematic distribution from blast-wave fits to measured data. The comparison of chiral potentials to the measured $$\textrm{K}^{-}$$ K - p interaction indicates that, while the $$\uppi \Sigma $$ π Σ – $$\textrm{K}^{-}$$ K - p dynamics is well reproduced by the model, the coupling to the $${\overline{\textrm{K}}}^0$$ K ¯ 0 n channel in the model is currently underestimated. 
    more » « less
  4. Fairness-aware learning studies the problem of building machine learning models that are subject to fairness requirements. Counterfactual fairness is a notion of fairness derived from Pearl's causal model, which considers a model is fair if for a particular individual or group its prediction in the real world is the same as that in the counterfactual world where the individual(s) had belonged to a different demographic group. However, an inherent limitation of counterfactual fairness is that it cannot be uniquely quantified from the observational data in certain situations, due to the unidentifiability of the counterfactual quantity. In this paper, we address this limitation by mathematically bounding the unidentifiable counterfactual quantity, and develop a theoretically sound algorithm for constructing counterfactually fair classifiers. We evaluate our method in the experiments using both synthetic and real-world datasets, as well as compare with existing methods. The results validate our theory and show the effectiveness of our method.

     
    more » « less
  5. In this paper, we consider the problem of quantifying parametric uncertainty in classical empirical interatomic potentials (IPs) using both Bayesian (Markov Chain Monte Carlo) and frequentist (profile likelihood) methods. We interface these tools with the Open Knowledgebase of Interatomic Models and study three models based on the Lennard-Jones, Morse, and Stillinger–Weber potentials. We confirm that IPs are typically sloppy, i.e., insensitive to coordinated changes in some parameter combinations. Because the inverse problem in such models is ill-conditioned, parameters are unidentifiable. This presents challenges for traditional statistical methods, as we demonstrate and interpret within both Bayesian and frequentist frameworks. We use information geometry to illuminate the underlying cause of this phenomenon and show that IPs have global properties similar to those of sloppy models from fields, such as systems biology, power systems, and critical phenomena. IPs correspond to bounded manifolds with a hierarchy of widths, leading to low effective dimensionality in the model. We show how information geometry can motivate new, natural parameterizations that improve the stability and interpretation of uncertainty quantification analysis and further suggest simplified, less-sloppy models. 
    more » « less