skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantitative Biology at Community Colleges, a Network of Biology and Mathematics Faculty Focused on Improving Numerical and Quantitative Skills of Students
Mastery of quantitative skills is increasingly critical for student success in life sciences, but few curricula adequately incorporate quantitative skills. Quantitative Biology at Community Colleges (QB@CC) is designed to address this need by building a grassroots consortium of community college faculty to 1) engage in interdisciplinary partnerships that increase participant confidence in life science, mathematics, and statistics domains; 2) generate and publish a collection of quantitative skills–focused open education resources (OER); and 3) disseminate these OER and pedagogical practices widely, in turn expanding the network. Currently in its third year, QB@CC has recruited 70 faculty into the network and created 20 modules. Modules can be accessed by interested biology and mathematics educators in high school, 2-year, and 4-year institutions. Here, we use survey responses, focus group interviews, and document analyses (principles-focused evaluation) to evaluate the progress in accomplishing these goals midway through the QB@CC program. The QB@CC network provides a model for developing and sustaining an interdisciplinary community that benefits participants and generates valuable resources for the broader community. Similar network-building programs may wish to adopt some of the effective aspects of the QB@CC network model to meet their objectives.  more » « less
Award ID(s):
1919613
PAR ID:
10400315
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Kurushima, Jennifer
Date Published:
Journal Name:
CBE—Life Sciences Education
Volume:
22
Issue:
2
ISSN:
1931-7913
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quantitative reasoning (QR) is the ability to apply mathematics and statistics in the context of real-life situations and scientific problems. It is an important skill that students require to make sense of complex biological phenomena and handle large datasets in biology courses and research as well as in professional contexts. Biology educators and researchers are responding to the increasing need for QR through curricular reforms and research into biology education. This qualitative study investigates how undergraduate biology instructors implement QR into their teaching. The study used pedagogical content knowledge (PCK) and a QR framework to explore instructors’ instructional goals, strategies, and perceived challenges and affordances in undergraduate biology instruction. The participants included 21 biology faculty across various institutions in the United States, who intentionally integrated QR in their instruction. Semi-structured interviews were used to collect data focusing on participants’ beliefs, experiences, and classroom practices. Findings indicated that instructors adapt their QR instruction based on course level and student preparedness. In lower-division courses, strategies emphasized building foundational skills, reducing math anxiety, and using scaffolded instruction to promote confidence. In upper-division courses, instructors expected greater math fluency but still encountered a wide range of student abilities, prompting a focus on correcting misconceptions in integrating math knowledge and fostering deeper conceptual understanding in biology. Many instructors reported that their personal and educational experiences, especially struggles with math, often shaped their inclusive and empathetic teaching practices. Additionally, instructors’ research backgrounds influenced instructional design, particularly in the use of authentic data, statistical tools, and real-world applications. Instructors’ teaching experiences led to refinement in lesson planning, pacing, and active learning strategies. Despite their efforts, instructors faced both internal and external challenges in implementing QR, including discomfort with teaching math, time limitations, student resistance, and institutional barriers. However, affordances such as departmental support, interdisciplinary collaboration, and curricular flexibility helped to overcome some of these challenges. This study highlights the complex relationships between instructors’ experiences, beliefs, and contextual factors in shaping QR instruction. This calls for professional development that supports reflective practice, builds interdisciplinary competence, and promotes instructional strategies that bridge biology and mathematics and will help instructors design a learning environment that better support students’ development of QR skills. These findings offer valuable guidance for professional development aimed at helping biology instructors incorporate quantitative reasoning into their teaching. Such efforts can better equip students to meet the quantitative demands of modern biology and promote their continued engagement in STEM fields through more inclusive and integrated instructional approaches. 
    more » « less
  2. Abstract Biology education research (BER), currently conducted mostly at four‐year colleges and universities, is changing the culture of teaching biology and improving student success. We are community college faculty participating in the NSF‐funded CC Bio INSITES network, getting training and support in BER to ask questions to improve student success in our highly diverse classes. Our research adapts and validates existing BER surveys and interventions in Hispanic‐serving college settings, with pre‐health professions’ students, and with traditionally underserved populations in STEM. BER projects serve assessment and program review goals common across many community colleges, and when implemented with high‐impact practices, BER measures the gains in student retention and success. We call for support to continue changing the culture of discipline‐based education research at community colleges. 
    more » « less
  3. Tanner, Kimberly (Ed.)
    This paper examines the extent to which community college biology education research (CC BER) has progressed since initial calls for broadening participation by comparing the number of CC BER publications, identifies barriers to and opportunities for community college faculty BER participation, and highlights the importance of institutional networks as a driver for incorporating CC faculty in BER. 
    more » « less
  4. With the growing availability and accessibility of big data in ecology, we face an urgent need to train the next generation of scientists in data science practices and tools. One of the biggest barriers for implementing a data-driven curriculum in undergraduate classrooms is the lack of training and support for educators to develop their own skills and time to incorporate these principles into existing courses or develop new ones. Alongside the research goals of the National Ecological Observatory Network (NEON), providing education and training are key components for building a community of scientists and users equipped to utilize large-scale ecological and environmental data. To address this need, the NEON Data Education Fellows program formed as a collaborative Faculty Mentoring Network (FMN) between scientists from NEON and university faculty interested in using NEON data and resources in their ecology classrooms. Like other FMNs, this group has two main goals: 1) to provide tools, resources, and support for faculty interested in developing data-driven curriculum, and (2) to make teaching materials that have been implemented and tested in the classroom available as open educational resources for other educators. We hosted this program using an open education and collaboration platform from the Quantitative Undergraduate Biology Education and Synthesis (QUBES) project. Here, we share lessons learned from facilitating five FMN cohorts and emphasize the successes, pitfalls, and opportunities for developing open education resources through community-driven collaborations. 
    more » « less
  5. Andrews, Tessa C. (Ed.)
    In an effort to increase community college (CC) biology education research (BER), an NSF-funded network called CC Bio INSITES (Community College Biology Instructor Network to Support Inquiry into Teaching and Education Scholarship; INSITES for short) was developed to provide intellectual, resource, and social support for CC faculty (CCF) to conduct BER. To investigate the efficacy of this network, we asked about the barriers and supports INSITES CCF have experienced when conducting BER and how specific INSITES supports have mitigated barriers and provided support for network members to engage in BER. We conducted interviews and focus groups with 17 network participants, representing 15 different CCs. Qualitative thematic analysis revealed six main barriers that INSITES CCF experience when conducting BER: time constraints, knowledge, incentives or rewards, administrative or peer support, infrastructure, and stigma or misconceptions associated with being CCF. Participants indicated how the supports provided by INSITES helped to mitigate each barrier. Social support was especially critical for CCF to develop a sense of belonging to the CC BER community, though that did not extend to the broader BER community. We describe how these supports function to support BER and recommend four actions for future support of CCF conducting BER. 
    more » « less