skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Changes in electrical generator cooling systems: Are they cost‐effective sources of water now and under climate change?
Abstract In the United States, thermal power plant electrical generators (EGs) are large water diverters and consumptive users who need water for cooling. Retrofitting existing cooling systems to dry cooling and building new facilities with dry cooling can save water and reduce EG's vulnerability to drought. However, this can be an expensive source of water. We estimate that the cost of water saved by retrofitting cooling in existing EGs ranges from $0.04/m3to $18/m3depending on facility characteristics. Also water savings from building new EGs with dry cooling ranges in cost per unit water from $1.29/m3to $2.24/m3. We compare costs with that for water development projects identified in the Texas State Water Plan. We find the water cost from converting to dry cooling is lower than many of the water development possibilities. We then estimate the impact of climate change on the cost of water saved, finding climate change can increase EG water use by up to 9.3% and lower the costs of water saved. Generally, it appears that water planners might consider cooling alterations as a cost competitive water development alternative whose cost would be further decreased by climate change.  more » « less
Award ID(s):
1739977 1639327
PAR ID:
10400349
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
JAWRA Journal of the American Water Resources Association
Volume:
59
Issue:
4
ISSN:
1093-474X
Page Range / eLocation ID:
p. 652-664
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. MDPI (Ed.)
    This paper provides an analysis of challenges and available solutions for exterior insulated panels suitable for deep energy retrofits of existing building envelopes. The analysis covers a review of available technologies that provide flexible retrofit insulated panels suitable for multiple climates and building typologies. Moreover, the paper proposes a new design for insulated retrofit panels that account for the majority of identified technical risks including cost, architectural diversity, climate variations, structural concerns, moisture resilience, air sealing, and water sealing. Additionally, the proposed design can be easily installed with minimal disruption to the occupants. A series of parametric and optimization analyses is carried out to identify the optimal design specifications for insulated panels suitable for deep retrofits of existing US housing stocks. The analysis results show that the optimal design criteria for the insulated panels can reduce heating and cooling energy consumption by up to 80% and HVAC capacities by 70%. Moreover, the results indicate that these insulated panels are highly cost effective for retrofitting US housing units located in cold climates. 
    more » « less
  2. Buildings are responsible for significant energy consumption and carbon emissions. Green buildings, which incorporate advanced building technologies, offer a solution to reducing energy use. However, high costs associated with green building development present a barrier to widespread adoption. Retrofit projects, involving remodeling, renovation, and redevelopment of existing buildings, offer a viable solution. While prior studies have examined the cost analysis of green and non-green buildings, there is a lack of evidence comparing new and retrofit projects. This study aims to address this gap by providing empirical evidence for the cost decomposition and benefits of new and retrofit projects. Data on energy use, building technology, and costs from 235 certified green homes in the United States were collected, and cost benefits were evaluated. Results show that retrofit projects cost, on average, $1270.5/m2 ($118.0/ft2), which is 30% less than new projects. Land acquisition and development account for 35% of retrofit costs, six times greater than new projects. Excluding land costs, retrofit projects cost, on average, $733.88/m2 ($68.2/ft2), 49% less than new projects. Retrofit projects use similar building technologies as new projects and produce larger energy savings. The cost-benefit values generated by retrofit projects are 86% greater than new projects when considering land costs and 142% greater without considering land costs. These findings contribute to cost management for complex building projects and energy policy for sustainable development. Retrofitting offers great potential to promote the green building movement and suggests effective subsidy programs as a public policy implication. 
    more » « less
  3. null (Ed.)
    Treating toxic monovalent anions such as NO 3 − or ClO 4 − in drinking water remains challenging due to the high capital and environmental costs associated with common technologies such as reverse osmosis or ion exchange. Capacitive deionization (CDI) is a promising technology for selective ion removal due to high reported ion selectivity for these two contaminants. However, the impacts of ion selectivity and influent water characteristics on CDI life cycle cost have not been considered. In this study we investigate the impact of ion selectivity on CDI system cost with a parameterized process model and technoeconomic analysis framework. Simulations indicate millimolar concentration contaminants such as nitrate can be removed at costs in the range of $0.01–0.30 per m 3 at reported selectivity coefficient ranges ( S = 6–10). Since perchlorate removal involves micromolar scale concentration changes, higher selectivity values than reported in literature ( S > 10 vs. S = 4–6.5) are required for comparable treatment costs. To contextualize simulated results for CDI treatment of NO 3 − , CDI unit operations were sized and costed for three case studies based on existing treatment facilities in Israel, Spain, and the United States, showing that achieving a nitrate selectivity of 10 could reduce life cycle treatment costs below $0.2 per m 3 . 
    more » « less
  4. Abstract In this work, we investigate the effect of areawide building retrofitting on summertime, street-level outdoor temperatures in an urban district in Berlin, Germany. We perform two building-resolving, weeklong large-eddy simulations: one with nonretrofitted buildings and the other with retrofitted buildings in the entire domain to meet today’s energy efficiency standards. The comparison of the two simulations reveals that the mean outdoor temperatures are higher with retrofitted buildings during daytime conditions. This behavior is caused by the much smaller inertia of the outermost roof/wall layer in the retrofitting case, which is thermally decoupled from the inner roof/wall layers by an insulation layer. As a result, the outermost layer heats up more rigorously during the daytime, leading to increased sensible heat fluxes into the atmosphere. During the nighttime, the outermost layer’s temperature drops down faster, resulting in cooling of the atmosphere. However, as the simulation progresses, the cooling effect becomes smaller and the warming effect becomes larger. After 1 week, we find the mean temperatures to be 4 K higher during the daytime while the cooling effects become negligible. Significance Statement Building retrofitting is taking place in Europe and other continents as a measure to reduce energy consumption. The change in the building envelope directly influences the urban atmosphere. Our study reveals that areawide retrofitting in a German city district can have negative effects on the outdoor microclimate in summer by causing higher air temperatures. 
    more » « less
  5. Li, Wenliang (Ed.)
    Reduced river flows and groundwater depletion as a result of climate change and population growth have increased the effort and difficulty accessing and processing water. In turn, residential water costs from municipal utilities are predicted to rise to unaffordable rates for poor residential water customers. Building on a regional conjunctive use model with future climate scenarios and 50-year future water supply plans, our study communicates the effects of climate change on poor people in El Paso, Texas, as water becomes more difficult and expensive to obtain in future years. Four scenarios for future water supply and future water costs were delineated based on expected impacts of climate change and groundwater depletion. Residential water use was calculated by census tract in El Paso, using basic needs indoor water use and evaporative cooling use as determinants of household water consumption. Based on household size and income data from the US Census, fraction of household income spent on water was determined. Results reveal that in the future, basic water supply will be a significant burden for 40% of all households in El Paso. Impacts are geographically concentrated in poor census tracts. Our study revealed that negative impacts from water resource depletion and increasing populations in El Paso will lead to costly and difficult water for El Paso water users. We provide an example of how to connect future resource scenarios, including those affected by climate change, to challenges of affordability for vulnerable consumers. 
    more » « less