Abstract An unusual β-amylase7 (BAM7) gene in some angiosperms, including grasses such as maize (Zea mays), appears to encode 2 functionally distinct proteins: a nuclear-localized transcription factor (BAM7) and a plastid-localized starch hydrolase (BAM2). In Arabidopsis (Arabidopsis thaliana), these 2 proteins are encoded by separate genes on different chromosomes but their physiological functions are not well established. Using the maize BAM7 gene as a model, we detected 2 populations of transcripts by 5′-RACE which encode the predicted proteins. The 2 transcripts are apparently synthesized independently using separate core promoters about 1 kb apart, the second of which is located in the first intron of the full-length gene. The N-terminus of the shorter protein, ZmBAM7-S, begins near the 3′ end of the first intron of ZmBAM7-L and starts with a predicted chloroplast transit peptide. We previously showed that ZmBAM7-S is catalytically active with properties like those of AtBAM2. Here, we report that ZmBAM7-S targets green fluorescent protein to plastids. The transcript encoding the longer protein, ZmBAM7-L, encodes an additional DNA-binding domain containing a functional nuclear localization signal. This putative dual-function gene originated at least 400 Mya, prior to the emergence of ferns, and has persisted in some angiosperms that lack a separate BAM2 gene. It appears to have been duplicated and subfunctionalized in at least 4 lineages of land plants, resulting in 2 genes resembling Arabidopsis BAM2 and BAM7. Targeting of 2 products from a single gene to different subcellular locations is not uncommon in plants, but it is unusual when they are predicted to serve completely different functions in the 2 locations. 
                        more » 
                        « less   
                    
                            
                            The BAM7 gene in Zea mays encodes a protein with similar structural and catalytic properties to Arabidopsis BAM2
                        
                    
    
            Starch accumulates in the plastids of green plant tissues during the day to provide carbon for metabolism at night. Starch hydrolysis is catalyzed by members of the β-amylase (BAM) family, which in Arabidopsis thaliana (At) includes nine structurally and functionally diverse members. One of these enzymes, AtBAM2, is a plastid-localized enzyme that is unique among characterized β-amylases since it is tetrameric and exhibits sigmoidal kinetics. Sequence alignments show that the BAM domains of AtBAM7, a catalytically inactive, nuclear-localized transcription factor with an N-terminal DNA-binding domain, and AtBAM2 are more closely related to each other than they are to any other AtBAM. Since the BAM2 gene is found in more ancient lineages, it was hypothesized that the BAM7 gene evolved from BAM2 . However, analysis of the genomes of 48 flowering plants revealed 12 species that appear to possess a BAM7 gene but lack a BAM2 gene. Upon closer inspection, these BAM7 proteins have a greater percent identity to AtBAM2 than to AtBAM7, and they share all of the AtBAM2 functional residues that BAM7 proteins normally lack. It is hypothesized that these genes may encode BAM2-like proteins although they are currently annotated as BAM7-like genes. To test this hypothesis, a cDNA for the short form of corn BAM7 (ZmBAM7-S) was designed for expression in Escherichia coli . Small-angle X-ray scattering data indicate that ZmBAM7-S has a tetrameric solution structure that is more similar to that of AtBAM2 than to that of AtBAM1. In addition, partially purified ZmBAM7-S is catalytically active and exhibits sigmoidal kinetics. Together, these data suggest that some BAM7 genes may encode a functional BAM2. Exploring and understanding the β-amylase gene structure could have an impact on the current annotation of genes. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1932755
- PAR ID:
- 10400384
- Date Published:
- Journal Name:
- Acta Crystallographica Section D Structural Biology
- Volume:
- 78
- Issue:
- 5
- ISSN:
- 2059-7983
- Page Range / eLocation ID:
- 560 to 570
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Many mammals can digest starch by using an enzyme called amylase, but different species eat different amounts of starchy foods. Amylase is released by the pancreas, and in certain species such as humans, it is also created by the glands that produce saliva, allowing the enzyme to be present in the mouth. There, amylase can start to break down starch, releasing a sweet taste that helps the animal to detect starchy foods. Curiously, humans have multiple copies of the gene that codes for the enzyme, but the exact number varies between people. Previous research has found that populations with more copies also eat more starch; if this correlation also existed in other species, it could help to understand how diets influence and shape genetic information. In addition, it is unclear how amylase came to be present in saliva, as the ancestors of mammals only produced the protein in the pancreas. Pajic et al. analyzed the genomes of a range of mammals and found that the more starch a species had in its diet, the more amylase gene copies it harbored in its genome. In fact, unrelated mammals living in different habitats and eating different types of food have similar numbers of amylase gene copies if they have the same level of starch in their diet. In addition, Pajic et al. discovered that animals such as mice, rats, pigs and dogs, which have lived in close contact with people for thousands of years, quickly adapted to the large amount of starch present in human food. In each of these species, a mechanism called gene duplication independently created new copies of the amylase gene. This could represent the first step towards some of these copies becoming active in the glands that release saliva. In people, having fewer copies of the amylase gene could mean they have a higher risk for diabetes; this number is also tied to the composition of the collection of bacteria that live in the mouth and the gut. Understanding how the copy number of the amylase gene affects biology will help to grasp how it also affects health and wellbeing, in humans and in our four-legged companions.more » « less
- 
            Abstract The adoption of agriculture triggered a rapid shift towards starch-rich diets in human populations1. Amylase genes facilitate starch digestion, and increased amylase copy number has been observed in some modern human populations with high-starch intake2, although evidence of recent selection is lacking3,4. Here, using 94 long-read haplotype-resolved assemblies and short-read data from approximately 5,600 contemporary and ancient humans, we resolve the diversity and evolutionary history of structural variation at the amylase locus. We find that amylase genes have higher copy numbers in agricultural populations than in fishing, hunting and pastoral populations. We identify 28 distinct amylase structural architectures and demonstrate that nearly identical structures have arisen recurrently on different haplotype backgrounds throughout recent human history.AMY1andAMY2Agenes each underwent multiple duplication/deletion events with mutation rates up to more than 10,000-fold the single-nucleotide polymorphism mutation rate, whereasAMY2Bgene duplications share a single origin. Using a pangenome-based approach, we infer structural haplotypes across thousands of humans identifying extensively duplicated haplotypes at higher frequency in modern agricultural populations. Leveraging 533 ancient human genomes, we find that duplication-containing haplotypes (with more gene copies than the ancestral haplotype) have rapidly increased in frequency over the past 12,000 years in West Eurasians, suggestive of positive selection. Together, our study highlights the potential effects of the agricultural revolution on human genomes and the importance of structural variation in human adaptation.more » « less
- 
            null (Ed.)The neprilysin (M13) family of metalloendopeptidases comprises highly conserved ectoenzymes that cleave and thereby inactivate many physiologically relevant peptides in the extracellular space. Impaired neprilysin activity is associated with numerous human diseases. Here, we present a comprehensive list and classification of M13 family members in Drosophila melanogaster. Seven Neprilysin (Nep) genes encode active peptidases, while 21 Neprilysin-like (Nepl) genes encode proteins predicted to be catalytically inactive. RNAseq data demonstrate that all 28 genes are expressed during development, often in a tissue-specific pattern. Most Nep proteins possess a transmembrane domain, whereas almost all Nepl proteins are predicted to be secreted.more » « less
- 
            ABSTRACT Starch accumulation in plants provides carbon for nighttime use, for regrowth after periods of dormancy, and for times of stress. Both ɑ‐ and β‐amylases (AMYs and BAMs, respectively) catalyze starch hydrolysis, but their functional roles are unclear. Moreover, the presence of catalytically inactive amylases that show starch excess phenotypes when deleted presents questions on how starch degradation is regulated. Plants lacking one of these catalytically inactive β‐amylases, BAM9, have enhanced starch accumulation when combined with mutations in BAM1 and BAM3, the primary starch degrading BAMs in response to stress and at night, respectively. BAM9 has been reported to be transcriptionally induced by stress although the mechanism for BAM9 function is unclear. From yeast two‐hybrid experiments, we identified the plastid‐localized AMY3 as a potential interaction partner for BAM9. We found that BAM9 interacted with AMY3 in vitro and that BAM9 enhances AMY3 activity about three‐fold. Modeling of the AMY3‐BAM9 complex predicted a previously undescribed alpha–alpha hairpin in AMY3 that could serve as a potential interaction site. Additionally, AMY3 lacking the alpha–alpha hairpin is unaffected by BAM9. Structural analysis of AMY3 showed that it can form a homodimer in solution and that BAM9 appears to replace one of the AMY3 monomers to form a heterodimer. The presence of both BAM9 and AMY3 in many vascular plant lineages, along with model‐based evidence that they heterodimerize, suggests that the interaction is conserved. Collectively these data suggest that BAM9 is a pseudoamylase that activates AMY3 in response to cellular stress, possibly facilitating stress recovery.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    