skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1932755

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract An unusual β-amylase7 (BAM7) gene in some angiosperms, including grasses such as maize (Zea mays), appears to encode 2 functionally distinct proteins: a nuclear-localized transcription factor (BAM7) and a plastid-localized starch hydrolase (BAM2). In Arabidopsis (Arabidopsis thaliana), these 2 proteins are encoded by separate genes on different chromosomes but their physiological functions are not well established. Using the maize BAM7 gene as a model, we detected 2 populations of transcripts by 5′-RACE which encode the predicted proteins. The 2 transcripts are apparently synthesized independently using separate core promoters about 1 kb apart, the second of which is located in the first intron of the full-length gene. The N-terminus of the shorter protein, ZmBAM7-S, begins near the 3′ end of the first intron of ZmBAM7-L and starts with a predicted chloroplast transit peptide. We previously showed that ZmBAM7-S is catalytically active with properties like those of AtBAM2. Here, we report that ZmBAM7-S targets green fluorescent protein to plastids. The transcript encoding the longer protein, ZmBAM7-L, encodes an additional DNA-binding domain containing a functional nuclear localization signal. This putative dual-function gene originated at least 400 Mya, prior to the emergence of ferns, and has persisted in some angiosperms that lack a separate BAM2 gene. It appears to have been duplicated and subfunctionalized in at least 4 lineages of land plants, resulting in 2 genes resembling Arabidopsis BAM2 and BAM7. Targeting of 2 products from a single gene to different subcellular locations is not uncommon in plants, but it is unusual when they are predicted to serve completely different functions in the 2 locations. 
    more » « less
  2. Starch accumulates in the plastids of green plant tissues during the day to provide carbon for metabolism at night. Starch hydrolysis is catalyzed by members of the β-amylase (BAM) family, which in Arabidopsis thaliana (At) includes nine structurally and functionally diverse members. One of these enzymes, AtBAM2, is a plastid-localized enzyme that is unique among characterized β-amylases since it is tetrameric and exhibits sigmoidal kinetics. Sequence alignments show that the BAM domains of AtBAM7, a catalytically inactive, nuclear-localized transcription factor with an N-terminal DNA-binding domain, and AtBAM2 are more closely related to each other than they are to any other AtBAM. Since the BAM2 gene is found in more ancient lineages, it was hypothesized that the BAM7 gene evolved from BAM2 . However, analysis of the genomes of 48 flowering plants revealed 12 species that appear to possess a BAM7 gene but lack a BAM2 gene. Upon closer inspection, these BAM7 proteins have a greater percent identity to AtBAM2 than to AtBAM7, and they share all of the AtBAM2 functional residues that BAM7 proteins normally lack. It is hypothesized that these genes may encode BAM2-like proteins although they are currently annotated as BAM7-like genes. To test this hypothesis, a cDNA for the short form of corn BAM7 (ZmBAM7-S) was designed for expression in Escherichia coli . Small-angle X-ray scattering data indicate that ZmBAM7-S has a tetrameric solution structure that is more similar to that of AtBAM2 than to that of AtBAM1. In addition, partially purified ZmBAM7-S is catalytically active and exhibits sigmoidal kinetics. Together, these data suggest that some BAM7 genes may encode a functional BAM2. Exploring and understanding the β-amylase gene structure could have an impact on the current annotation of genes. 
    more » « less