A new N-alkynylated dithieno[3,2- b :2′,3′- d ]pyrrole (DTP) monomer was synthesized using a Buchwald–Hartwig amination of 3,3′-dibromo-2,2′-bithiophene with pent-4-yn-1-amine. The obtained monomer was investigated for the possibility of a pre-polymerization modification via Huisgen 1,3-dipolar cycloaddition (“click”) reaction with azide-containing organic compounds. The synthesized N-alkynylated DTP monomer is soluble in a number of organic solvents and reacts with organic azides via “click” reactions in mild conditions, achieving high yields. The N-alkynylated DTP monomer and its “click”-modified derivative can be electropolymerized to form polymeric films. Herein, the synthesis and characterization of a “click” modified DTP monomer, its pre-modified derivative, and their corresponding polymers are described. The developed method is a facile route to synthesize a new generation of various N-functionalized DTP homopolymers.
more »
« less
Synthesis of oxaboranes via nickel-catalyzed dearylative cyclocondensation
We report Ni-catalyzed dearylative cyclocondensation of aldehydes, alkynes, and triphenylborane. The reaction is initiated by oxidative cyclization of the aldehyde and alkyne coupling partners to generate an oxanickelacyclopentene which reacts with triphenylborane to form oxaboranes. This formal dearylative cyclocondensation reaction generates oxaboranes in moderate-to-high yields (47–99%) with high regioselectivities under mild reaction conditions. This approach represents a direct and modular synthesis of oxaboranes which are difficult to access using current methods. These oxaboranes are readily transformed into valuable building blocks for organic synthesis and an additional class of boron heterocycles. Selective homocoupling forms oxaboroles, oxidation generates aldol products, and reduction and arylation form substituted allylic alcohols.
more »
« less
- Award ID(s):
- 1955529
- PAR ID:
- 10400436
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 13
- Issue:
- 26
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 7790 to 7795
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Ru–H complex (PCy 3 ) 2 (CO)RuHCl (1) was found to be a highly effective catalyst for the three-component deaminative coupling reaction of anilines with aldehydes and allylamines to form 2,3-disubstituted quinoline products. The analogous coupling reaction of anilines with aldehydes and cyclic enamines led to the selective formation of the tricyclic quinoline derivatives. The reaction profile study showed that the imine is initially formed from the dehydrative coupling of aniline and aldehyde, and it undergoes the deaminative coupling and annulation reaction with amine substrate to form the quinoline product. The catalytic coupling method provides a step-efficient synthesis of 2,3-disubstituted quinoline derivatives without employing any reactive reagents or forming wasteful byproducts.more » « less
-
The solid-state synthesis of perovskite BiFeO3 has been a topic of interest for decades. Many studies have reported challenges in the synthesis of BiFeO3 from starting oxides of Bi2O3 and Fe2O3, mainly associated with the development of persistent secondary phases such as Bi25FeO39 (sillenite) and Bi2Fe4O9 (mullite). These secondary phases are thought to be a consequence of unreacted Fe-rich and Bi-rich regions, that is, incomplete interdiffusion. In the present work, in situ high-temperature X-ray diffraction is used to demonstrate that Bi2O3 first reacts with Fe2O3 to form sillenite Bi25FeO39, which then reacts with the remaining Fe2O3 to form BiFeO3. Therefore, the synthesis of perovskite BiFeO3 is shown to occur via a two-step reaction sequence with Bi25FeO39 as an intermediate compound. Because Bi25FeO39 and the γ-Bi2O3 phase are isostructural, it is difficult to discriminate them solely from X-ray diffraction. Evidence is presented for the existence of the intermediate sillenite Bi25FeO39 using quenching experiments, comparisons between Bi2O3 behavior by itself and in the presence of Fe2O3, and crystal structure examination. With this new information, a proposed reaction pathway from the starting oxides to the product is presented.more » « less
-
Abstract The valorization of waste‐derived feedstocks for polymer synthesis represents a sustainable alternative to petroleum‐based materials. In this study, brown grease, a low‐value waste lipid source, is utilized as a precursor for polyol monomer synthesis via a two‐step functionalization process. Transesterification of brown grease with allyl alcohol generates allyl esters, which are subsequently modified via thiol‐ene click chemistry with 2‐mercaptoethanol to yield hydroxyl‐functionalized polyols (BG‐diol). The thiol‐ene reaction proceeds under mild UV‐initiated conditions, achieving high conversion efficiency (>90%) while preserving the structural integrity of the derived polyol.BG‐diolis further polymerized with 4,4′‐methylene diphenyl diisocyanate (MDI) through step‐growth polymerization to form brown grease‐derived polyurethane (BG‐PU). Comparative analysis ofBG‐PUwith polyurethane (PU) synthesized from purified oleic acid (OLA‐PU) demonstrates comparable molecular weight distributions (Mn = 14.4 kDa,Mw = 20.4 kDa forBG‐PU) and thermal properties (Tg = 24 °C,Td,5%= 270 °C forBG‐PU). These results underscore the feasibility of brown grease as a cost‐effective and renewable alternative to plant oil‐based polyols, offering a pathway toward sustainable PU production while mitigating food security concerns. This approach exemplifies the potential of waste lipids in circular economy strategies for high‐performance polymer synthesis.more » « less
-
The nitrogen-interrupted Nazarov cyclization can be a powerful method for the stereocontrolled synthesis of sp 3 -rich N -heterocycles. However, due to the incompatibility between the basicity of nitrogen and the acidic reaction conditions, examples of this type of Nazarov cyclization are scarce. Herein, we report a one-pot nitrogen-interrupted halo -Prins/ halo -Nazarov coupling cascade that joins two simple building blocks, an enyne and a carbonyl partner, to furnish functionalized cyclopenta[ b ]indolines with up to four contiguous stereocenters. For the first time, we provide a general method for the alkynyl halo -Prins reaction of ketones, thus enabling the formation of quaternary stereocenters. Additionally, we describe the outcomes of secondary alcohol enyne couplings, which exhibit helical chirality transfer. Furthermore, we investigate the impact of aniline enyne substituents on the reaction and evaluate the tolerance of different functional groups. Finally, we discuss the reaction mechanism and demonstrate various transformations of the prepared indoline scaffolds, highlighting their applicability in drug discovery campaigns.more » « less
An official website of the United States government

