Abstract Citizen-generated counter speech is a promising way to fight hate speech and promote peaceful, non-polarized discourse. However, there is a lack of large-scale longitudinal studies of its effectiveness for reducing hate speech. To this end, we perform an exploratory analysis of the effectiveness of counter speech using several different macro- and micro-level measures to analyze 180,000 political conversations that took place on German Twitter over four years. We report on the dynamic interactions of hate and counter speech over time and provide insights into whether, as in ‘classic’ bullying situations, organized efforts are more effective than independent individuals in steering online discourse. Taken together, our results build a multifaceted picture of the dynamics of hate and counter speech online. While we make no causal claims due to the complexity of discourse dynamics, our findings suggest that organized hate speech is associated with changes in public discourse and that counter speech—especially when organized—may help curb hateful rhetoric in online discourse.
more »
« less
Restoring Healthy Online Discourse by Detecting and Reducing Controversy, Misinformation, and Toxicity Online
Healthy online discourse is becoming less and less accessible beneath the growing noise of controversy, mis- and dis-information, and toxic speech. While IR is crucial in detecting harmful speech, researchers must work across disciplines to develop interventions, and partner with industry to deploy them rapidly and effectively. In this position paper, we argue that both detecting online information disorders and deploying novel, real-world content moderation tools is crucial in promoting empathy in social networks, and maintaining free expression and discourse. We detail our insights in studying different social networks such as Parler and Reddit. Finally, we discuss the joys and challenges as a lab-grown startup working with both academia and other industrial partners in finding a path toward a better, more trustworthy online ecosystem.
more »
« less
- Award ID(s):
- 1951091
- PAR ID:
- 10400541
- Date Published:
- Journal Name:
- Restoring Healthy Online Discourse by Detecting and Reducing Controversy, Misinformation, and Toxicity Online
- Page Range / eLocation ID:
- 2627 to 2628
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This study examines how the relationship between social media discourse and offline confrontations in social movements, focusing on the Black Lives Matter (BLM) protests following George Floyd's death in 2020. While social media's role in facilitating social movements is well-documented, its relationship with offline confrontations remains understudied. To bridge this gap, we curated a dataset comprising 108,443 Facebook posts and 1,406 offline BLM protest events. Our analysis categorized online media framing into consonance (alignment) and dissonance (misalignment) with the perspectives of different involved parties. Our findings indicate a reciprocal relationship between online activism support and offline confrontational occurrences. Online support for the BLM, in particular, was associated with less property damage and fewer confrontational protests in the days that followed. Conversely, offline confrontations amplified online support for the protesters. By illuminating this dynamic, we highlight the multifaceted influence of social media on social movements. Not only does it serve as a platform for information dissemination and mobilization but also plays a pivotal role in shaping public discourse about offline confrontations.more » « less
-
null (Ed.)Moral outrage shapes fundamental aspects of human social life and is now widespread in online social networks. Here, we show how social learning processes amplify online moral outrage expressions over time. In two pre-registered observational studies of Twitter (7,331 users and 12.7 million total tweets) and two pre-registered behavioral experiments (N = 240), we find that positive social feedback for outrage expressions increases the likelihood of future outrage expressions, consistent with principles of reinforcement learning. We also find that outrage expressions are sensitive to expressive norms in users’ social networks, over and above users’ own preferences, suggesting that norm learning processes guide online outrage expressions. Moreover, expressive norms moderate social reinforcement of outrage: in ideologically extreme networks, where outrage expression is more common, users are less sensitive to social feedback when deciding whether to express outrage. Our findings highlight how platform design interacts with human learning mechanisms to impact moral discourse in digital public spaces.more » « less
-
Political discourse is the soul of democracy, but misunderstanding and conflict can fester in divisive conversations. The widespread shift to online discourse exacerbates many of these problems and corrodes the capacity of diverse societies to cooperate in solving social problems. Scholars and civil society groups promote interventions that make conversations less divisive or more productive, but scaling these efforts to online discourse is challenging. We conduct a large-scale experiment that demonstrates how online conversations about divisive topics can be improved with AI tools. Specifically, we employ a large language model to make real-time, evidence-based recommendations intended to improve participants’ perception of feeling understood. These interventions improve reported conversation quality, promote democratic reciprocity, and improve the tone, without systematically changing the content of the conversation or moving people’s policy attitudes.more » « less
-
With the spreading of hate speech on social media in recent years, automatic detection of hate speech is becoming a crucial task and has attracted attention from various communities. This task aims to recognize online posts (e.g., tweets) that contain hateful information. The peculiarities of languages in social media, such as short and poorly written content, lead to the difficulty of learning semantics and capturing discriminative features of hate speech. Previous studies have utilized additional useful resources, such as sentiment hashtags, to improve the performance of hate speech detection. Hashtags are added as input features serving either as sentiment-lexicons or extra context information. However, our close investigation shows that directly leveraging these features without considering their context may introduce noise to classifiers. In this paper, we propose a novel approach to leverage sentiment hashtags to enhance hate speech detection in a natural language inference framework. We design a novel framework SRIC that simultaneously performs two tasks: (1) semantic relation inference between online posts and sentiment hashtags, and (2) sentiment classification on these posts. The semantic relation inference aims to encourage the model to encode sentiment-indicative information into representations of online posts. We conduct extensive experiments on two real-world datasets and demonstrate the effectiveness of our proposed framework compared with state-of-the-art representation learning models.more » « less
An official website of the United States government

