skip to main content

Title: Elasticity of Slide-Ring Gels
Slide-ring gels are polymer networks with cross-links that can slide along the chains. In contrast to conventional unentangled networks with cross-links fixed along the chains, the slide-ring networks are strain-softening and distribute tension much more uniformly between their strands due to the so-called “pulley effect”. The sliding of cross-links also reduces the elastic modulus in comparison with the modulus of conventional networks with the same number density of cross-links and elastic strands. We develop a single-chain model to account for the redistribution of monomers between network strands of a primary chain. This model takes into account both the pulley effect and fluctuations in the number of monomers per network strand. The pulley effect leads to modulus reduction and uniform tension redistribution between network strands, while fluctuations in the number of strand monomers dominate the strain-softening, the magnitude of which decreases upon network swelling and increases upon deswelling.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACS Macro Letters
Page Range / eLocation ID:
362 to 368
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the effect of inter-fiber adhesion on the mechanical behavior of cross-linked ran- dom fiber networks in two dimensions. To this end, we consider networks with connectiv- ity number, z , below, at, and above the isostaticity limit of the structure without adhesion, z c . Fibers store energy in the axial and bending deformation mode and the cross-links are of freely rotating type. Adhesive forces lead to fiber bundling and to a reduction of the total volume of the network. The degree of shrinkage is determined as a function of the strength of adhesion and network parameters. The mechanical response of these struc- tures is further studied in uniaxial tension and compression. The stress-strain curves of networks without inter-fiber adhesion exhibit an initial linear regime, followed by strain stiffening in tension and strain softening and strain localization in compression. In pres- ence of adhesion, the response becomes more complex. The initial linear regime persists, with the effective modulus decreasing and increasing with increasing adhesion in cases with z > z c and z < z c , respectively. The strain range of the linear regime increases signif- icantly with increasing adhesion. Networks with z > z c subjected to tension strain-stiffen at rates that depend on the adhesion strength, but eventually enter a large strain/stress regime in which the response is independent of this parameter. Networks with z < z c are stabilized by adhesion in the unloaded state. Beyond the initial linear regime their tangent modulus gradually decreases, only to increase again at large strains. Adhesive interactions lead to similar effects in compression. Specifically, in the z > z c case, increasing the adhe- sion strength reduces the linear elastic modulus and significantly increases the range of the linear regime, delaying strain localization. This first investigation of the mechanics of cross-linked random networks with inter-fiber adhesion opens the door to the design of soft materials with novel properties. 
    more » « less
  2. Fiber-based materials are prevalent around us. While microscopically these systems resemble a discrete assembly of randomly interconnected fibers, the network architecture varies from one system to another. To identify the role of the network architecture, we study here cellular and fibrous random networks in tension and compression, and in the context of large strain elasticity. We observe that, compared to cellular networks of same global parameter set, fibrous networks exhibit in tension reduced strain stiffening, reduced fiber alignment, and reduced Poisson’s contraction in uniaxial tension. These effects are due to the larger number of kinematic constraints in the form of cross-links per fiber in the fibrous case. The dependence of the small strain modulus on network density is cubic in the fibrous case and quadratic in the cellular case. This difference persists when the number of cross-links per fiber in the fibrous case is rendered equal to that of the cellular case, which indicates that the different scaling is due to the higher structural disorder of the fibrous networks. The behavior of the two network types in compression is similar, although softening induced by fiber buckling and strain localization is less pronounced in the fibrous case. The contribution of transient interfiber contacts is weak in tension and important in compression 
    more » « less
  3. The mechanical properties of a polymer network reflect the collective behavior of all of the constituent strands within the network. These strands comprise a distribution of states, and a central question is how the deformation and tension experienced by a strand is influenced by strand length. Here, we address this question through the use of mechanophore force probes with discrete molecular weights. Probe strands, each bearing a mechanochromic spiropyran (SP), were prepared through an iterative synthetic strategy, providing uniform PDMS-functionalized SP force probes with molecular weights of 578, 1170, and 2356 g/mol. The probes were each doped (9 mM) into the same silicone elastomer matrix. Upon stretching, the materials change color, consistent with the expected conversion of SP to merocyanine (MC). The critical strain at which measurable mechanochromism is observed is correlated with the strain hardening of the matrix, but it is independent of the molecular length of the probe strand. When a network with activated strands is relaxed, the color dissipates, and the rate of decoloration varies as a function of the relaxing strain ((ε_r ) ̅); faster decoloration occurs at lower (ε_r ) ̅. The dependence of decoloration rate on (ε_r ) ̅ is taken to reflect the effect of residual tension in the once-activated strands on the reversion reaction of MC to SP, and the effect of that residual tension is indistinguishable across the three molecular lengths examined. The combination of discrete strand synthesis and mechanochromism provides a foundation to further test and develop molecular-based theories of elasticity and fracture in polymer networks. 
    more » « less
  4. We combine a slip-spring model with an ‘entangled kink dynamics’ (EKD) model for strong uniaxial extensional flows (with Rouse Weissenberg number W i R ≫ 1 ) of long ( M w > 1   Mkg / mol for polystyrene) entangled polymers in solutions and melts. The slip-spring model captures the dynamics up to the formation of a ‘kinked’ or folded state, while the kink dynamics simulation tracks the dynamics from that point forward to complete extension. We show that a single-chain slip-spring model using affine motion of the slip-spring anchor points produces unrealistically high tension near the center of the chain once the Hencky strain exceeds around unity or so, exceeding the maximum tension that a chain entangled with a second chain is able to support. This unrealistic tension is alleviated by pairing the slip links on one chain with those on a second chain, and allowing some of the large tension on one of the two to be transferred to the second chain, producing non-affine motion of each. This explicit pairing of entanglements mimics the entanglement pairing also used in the EKD model, and allows the slip spring simulations to be carried out to strains high enough for the EKD model to become valid. We show that results nearly equivalent to those from paired chains are obtained in a single-chain slip-spring simulation by simply specifying that the tension in a slip spring cannot exceed the theoretical maximum value of ζ ′ ϵ ˙ L 2 / 8 where ζ ′ , ϵ ˙ and L are the friction per unit length, strain rate and contour length of the chain, respectively. The effects of constraint release (CR) and regeneration of entanglements is also studied and found to have little effect on the chain statistics up to the formation of the kinked state. The resulting hybrid model provides a fast, simple, simulation method to study the response of high molecular weight ( M w > 1   Mkg / mol ) polymers in fast flows ( W i R ≫ 1 ), where conventional simulation techniques are less applicable due to computational cost. 
    more » « less
  5. The classic picture of soft material mechanics is that of rubber elasticity, in which material modulus is related to the entropic elasticity of flexible polymeric linkers. The rubber model, however, largely ignores the role of valence (i.e., the number of network chains emanating from a junction). Recent work predicts that valence, and particularly the Maxwell isostatic point, plays a key role in determining the mechanics of semiflexible polymer networks. Here, we report a series of experiments confirming the prominent role of valence in determining the mechanics of a model system. The system is based on DNA nanostars (DNAns): multiarmed, self-assembled nanostructures that form thermoreversible equilibrium gels through base pair-controlled cross-linking. We measure the linear and nonlinear elastic properties of these gels as a function of DNAns arm number, f, and concentration [DNAns]. We find that, as f increases from three to six, the gel’s high-frequency plateau modulus strongly increases, and its dependence on [DNAns] transitions from nonlinear to linear. Additionally, higher-valence gels exhibit less strain hardening, indicating that they have less configurational freedom. Minimal strain hardening and linear dependence of shear modulus on concentration at high f are consistent with predictions for isostatic systems. Evident strain hardening and nonlinear concentration dependence of shear modulus suggest that the low-f networks are subisostatic and have a transient, potentially fractal percolated structure. Overall, our observations indicate that network elasticity is sensitive both to entropic elasticity of network chains and to junction valence, with an apparent isostatic point5<fc6in agreement with the Maxwell prediction.

    more » « less