Since the invention of polymer networks such as cross-linked natural rubber in the 19th century, it has been a dogma that stiffer networks are less stretchable. We report a universal strategy for decoupling the stiffness and extensibility of single-network elastomers. Instead of using linear polymers as network strands, we use foldable bottlebrush polymers, which feature a collapsed backbone grafted with many linear side chains. Upon elongation, the collapsed backbone unfolds to release stored length, enabling remarkable extensibility. By contrast, the network elastic modulus is inversely proportional to network strand mass and is determined by the side chains. We validate this concept by creating single-network elastomers with nearly constant Young’s modulus (30 kilopascals) while increasing tensile breaking strain by 40-fold, from 20 to 800%. We show that this strategy applies to networks of different polymer species and topologies. Our discovery opens an avenue for developing polymeric materials with extraordinary mechanical properties.
more »
« less
Elasticity of Slide-Ring Gels
Slide-ring gels are polymer networks with cross-links that can slide along the chains. In contrast to conventional unentangled networks with cross-links fixed along the chains, the slide-ring networks are strain-softening and distribute tension much more uniformly between their strands due to the so-called “pulley effect”. The sliding of cross-links also reduces the elastic modulus in comparison with the modulus of conventional networks with the same number density of cross-links and elastic strands. We develop a single-chain model to account for the redistribution of monomers between network strands of a primary chain. This model takes into account both the pulley effect and fluctuations in the number of monomers per network strand. The pulley effect leads to modulus reduction and uniform tension redistribution between network strands, while fluctuations in the number of strand monomers dominate the strain-softening, the magnitude of which decreases upon network swelling and increases upon deswelling.
more »
« less
- Award ID(s):
- 2116298
- PAR ID:
- 10400542
- Date Published:
- Journal Name:
- ACS Macro Letters
- Volume:
- 12
- ISSN:
- 2161-1653
- Page Range / eLocation ID:
- 362 to 368
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the effect of inter-fiber adhesion on the mechanical behavior of cross-linked ran- dom fiber networks in two dimensions. To this end, we consider networks with connectiv- ity number, z , below, at, and above the isostaticity limit of the structure without adhesion, z c . Fibers store energy in the axial and bending deformation mode and the cross-links are of freely rotating type. Adhesive forces lead to fiber bundling and to a reduction of the total volume of the network. The degree of shrinkage is determined as a function of the strength of adhesion and network parameters. The mechanical response of these struc- tures is further studied in uniaxial tension and compression. The stress-strain curves of networks without inter-fiber adhesion exhibit an initial linear regime, followed by strain stiffening in tension and strain softening and strain localization in compression. In pres- ence of adhesion, the response becomes more complex. The initial linear regime persists, with the effective modulus decreasing and increasing with increasing adhesion in cases with z > z c and z < z c , respectively. The strain range of the linear regime increases signif- icantly with increasing adhesion. Networks with z > z c subjected to tension strain-stiffen at rates that depend on the adhesion strength, but eventually enter a large strain/stress regime in which the response is independent of this parameter. Networks with z < z c are stabilized by adhesion in the unloaded state. Beyond the initial linear regime their tangent modulus gradually decreases, only to increase again at large strains. Adhesive interactions lead to similar effects in compression. Specifically, in the z > z c case, increasing the adhe- sion strength reduces the linear elastic modulus and significantly increases the range of the linear regime, delaying strain localization. This first investigation of the mechanics of cross-linked random networks with inter-fiber adhesion opens the door to the design of soft materials with novel properties.more » « less
-
We develop a forensic-like framework for network structural characterization based on an analysis of their nonlinear response to mechanical deformation. For model networks, this methodology provides information about the strand degree of polymerization between cross-links, the effective cross-link functionality, the contribution of loops and entanglements to network elasticity, as well as the fraction of stress-supporting strands. For networks with trapped entanglements, we identify a transition from cross-link-controlled to entanglement-controlled network elasticity with increasing degree of polymerization of network strands between cross-links and show how specific features of this transition are manifested in changes of entanglement and structural shear moduli characterizing different modes of network deformation. In particular, this cross-link-to-entanglement transition results in saturation of the network shear modulus at small deformations and renormalization of the degree of polymerization of the effective network strands determining nonlinear elastic response in the strongly entangled networks. The developed approach enables the classification of networks according to their topology and effectiveness of stress distribution between network strands.more » « less
-
Fiber-based materials are prevalent around us. While microscopically these systems resemble a discrete assembly of randomly interconnected fibers, the network architecture varies from one system to another. To identify the role of the network architecture, we study here cellular and fibrous random networks in tension and compression, and in the context of large strain elasticity. We observe that, compared to cellular networks of same global parameter set, fibrous networks exhibit in tension reduced strain stiffening, reduced fiber alignment, and reduced Poisson’s contraction in uniaxial tension. These effects are due to the larger number of kinematic constraints in the form of cross-links per fiber in the fibrous case. The dependence of the small strain modulus on network density is cubic in the fibrous case and quadratic in the cellular case. This difference persists when the number of cross-links per fiber in the fibrous case is rendered equal to that of the cellular case, which indicates that the different scaling is due to the higher structural disorder of the fibrous networks. The behavior of the two network types in compression is similar, although softening induced by fiber buckling and strain localization is less pronounced in the fibrous case. The contribution of transient interfiber contacts is weak in tension and important in compressionmore » « less
-
The mechanical properties of a polymer network reflect the collective behavior of all of the constituent strands within the network. These strands comprise a distribution of states, and a central question is how the deformation and tension experienced by a strand is influenced by strand length. Here, we address this question through the use of mechanophore force probes with discrete molecular weights. Probe strands, each bearing a mechanochromic spiropyran (SP), were prepared through an iterative synthetic strategy, providing uniform PDMS-functionalized SP force probes with molecular weights of 578, 1170, and 2356 g/mol. The probes were each doped (9 mM) into the same silicone elastomer matrix. Upon stretching, the materials change color, consistent with the expected conversion of SP to merocyanine (MC). The critical strain at which measurable mechanochromism is observed is correlated with the strain hardening of the matrix, but it is independent of the molecular length of the probe strand. When a network with activated strands is relaxed, the color dissipates, and the rate of decoloration varies as a function of the relaxing strain ((ε_r ) ̅); faster decoloration occurs at lower (ε_r ) ̅. The dependence of decoloration rate on (ε_r ) ̅ is taken to reflect the effect of residual tension in the once-activated strands on the reversion reaction of MC to SP, and the effect of that residual tension is indistinguishable across the three molecular lengths examined. The combination of discrete strand synthesis and mechanochromism provides a foundation to further test and develop molecular-based theories of elasticity and fracture in polymer networks.more » « less