skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Human and bacterial TatD enzymes exhibit apurinic/apyrimidinic (AP) endonuclease activity
Abstract

TatD enzymes are evolutionarily conserved deoxyribonucleases associated with DNA repair, apoptosis, development, and parasite virulence. Three TatD paralogs exist in humans, but their nuclease functions are unknown. Here, we describe the nuclease activities of two of the three human TatD paralogs, TATDN1 and TATDN3, which represent two phylogenetically distinct clades based on unique active site motifs. We found that in addition to 3′-5′ exonuclease activity associated with other TatD proteins, both TATDN1 and TATDN3 exhibited apurinic/apyrimidinic (AP) endonuclease activity. The AP endonuclease activity was observed only in double-stranded DNA, whereas exonuclease activity was operative primarily in single-stranded DNA. Both nuclease activities were observed in the presence of Mg2+ or Mn2+, and we identified several divalent metal cofactors that inhibited exonuclease and supported AP endonuclease activity. Biochemical analysis and a crystal structure of TATDN1 bound to 2′-deoxyadenosine 5′-monophosphate in the active site are consistent with two-metal ion catalysis, and we identify several residues that differentiate nuclease activities in the two proteins. In addition, we show that the three Escherichia coli TatD paralogs are also AP endonucleases, indicating that this activity is conserved across evolution. Together, these results indicate that TatD enzymes constitute a family of ancient AP endonucleases.

 
more » « less
Award ID(s):
1928918
NSF-PAR ID:
10400636
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Nucleic Acids Research
Volume:
51
Issue:
6
ISSN:
0305-1048
Format(s):
Medium: X Size: p. 2838-2849
Size(s):
p. 2838-2849
Sponsoring Org:
National Science Foundation
More Like this
  1. IscB proteins are putative nucleases encoded in a distinct family of IS200/IS605 transposons and are likely ancestors of the RNA-guided endonuclease Cas9, but the functions of IscB and its interactions with any RNA remain uncharacterized. Using evolutionary analysis, RNA sequencing, and biochemical experiments, we reconstructed the evolution of CRISPR-Cas9 systems from IS200/IS605 transposons. We found that IscB uses a single noncoding RNA for RNA-guided cleavage of double-stranded DNA and can be harnessed for genome editing in human cells. We also demonstrate the RNA-guided nuclease activity of TnpB, another IS200/IS605 transposon-encoded protein and the likely ancestor of Cas12 endonucleases. This work reveals a widespread class of transposon-encoded RNA-guided nucleases, which we name OMEGA (obligate mobile element–guided activity), with strong potential for developing as biotechnologies. 
    more » « less
  2. Abstract

    Nucleic acid detection is essential for numerous biomedical applications, but often requires complex protocols and/or suffers false-positive readouts. Here, we describe SENTINEL, an approach that combines isothermal amplification with a sequence-specific degradation method to detect nucleic acids with high sensitivity and sequence-specificity. Target single-stranded RNA or double-stranded DNA molecules are amplified by loop-mediated isothermal amplification (LAMP) and subsequently degraded by the combined action of lambda exonuclease and a sequence-specific DNA endonuclease (e.g., Cas9). By combining the sensitivity of LAMP with the precision of DNA endonucleases, the protocol achieves attomolar limits of detection while differentiating between sequences that differ by only one or two base pairs. The protocol requires less than an hour to complete using a 65 °C heat block and fluorometer, and detects SARS-CoV-2 virus particles in human saliva and nasopharyngeal swabs with high sensitivity.

     
    more » « less
  3. Abstract

    Two families of DNA glycosylases (YtkR2/AlkD, AlkZ/YcaQ) have been found to remove bulky and crosslinking DNA adducts produced by bacterial natural products. Whether DNA glycosylases eliminate other types of damage formed by structurally diverse antibiotics is unknown. Here, we identify four DNA glycosylases—TxnU2, TxnU4, LldU1 and LldU5—important for biosynthesis of the aromatic polyketide antibiotics trioxacarcin A (TXNA) and LL-D49194 (LLD), and show that the enzymes provide self-resistance to the producing strains by excising the intercalated guanine adducts of TXNA and LLD. These enzymes are highly specific for TXNA/LLD-DNA lesions and have no activity toward other, less stable alkylguanines as previously described for YtkR2/AlkD and AlkZ/YcaQ. Similarly, TXNA-DNA adducts are not excised by other alkylpurine DNA glycosylases. TxnU4 and LldU1 possess unique active site motifs that provide an explanation for their tight substrate specificity. Moreover, we show that abasic (AP) sites generated from TxnU4 excision of intercalated TXNA-DNA adducts are incised by AP endonuclease less efficiently than those formed by 7mG excision. This work characterizes a distinct class of DNA glycosylase acting on intercalated DNA adducts and furthers our understanding of specific DNA repair self-resistance activities within antibiotic producers of structurally diverse, highly functionalized DNA damaging agents.

     
    more » « less
  4. Bacteriophage T4 encodes orthologs of the proteins Rad50 (gp46) and Mre11 (gp47), which form a heterotetrameric complex (MR) that is responsible for host genome degradation and the processing of DNA ends for recombination-dependent DNA repair. In this chapter, we describe the ensemble methods currently employed by our laboratory to characterize the exonuclease activity of the T4 MR complex. DNA exonucleases play a vital role in maintaining the integrity of DNA through their participation in DNA repair pathways and as proofreaders for DNA polymerases. Methods for quantifying the general features of the exonuclease, and for determining steady-state kinetic parameters (Km, kcat), the polarity of exonuclease activity, and processivity are presented. These methods should be applicable to all DNA exonucleases, and to some extent endonucleases. 
    more » « less
  5. null (Ed.)
    Many proteins sequence-specifically bind duplex DNA, e.g., transcriptional regulatory proteins. Analysis of their interactions can be performed by a variety of methods, including electrophoretic mobility shift assays (EMSA) and quantitative DNase I footprinting. Here we describe an additional electrophoretic method, restriction endonuclease protection assays (REPA), to qualitatively and quantitatively study the interactions of thermophilic transcription regulatory proteins to PCR-generated, infrared-fluorescent DNA probes. REPA utilizes type IIS restriction endonucleases (IISRE), which cleave double-stranded DNA without specificity at a fixed distance from their recognition sequence. Thus, IISREs can be used to probe the occupancy of a suitably situated DNA-binding site for a variety of ligands. REPA has certain advantages as it does not require the maintenance of ligand-DNA complex stability during gel electrophoresis, as is the case with EMSA and is technically far less challenging than quantitative DNase I footprinting. 
    more » « less