skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Kinetic Analysis of the Exonuclease Activity of the Bacteriophage T4 Mre11-Rad50 Complex.
Bacteriophage T4 encodes orthologs of the proteins Rad50 (gp46) and Mre11 (gp47), which form a heterotetrameric complex (MR) that is responsible for host genome degradation and the processing of DNA ends for recombination-dependent DNA repair. In this chapter, we describe the ensemble methods currently employed by our laboratory to characterize the exonuclease activity of the T4 MR complex. DNA exonucleases play a vital role in maintaining the integrity of DNA through their participation in DNA repair pathways and as proofreaders for DNA polymerases. Methods for quantifying the general features of the exonuclease, and for determining steady-state kinetic parameters (Km, kcat), the polarity of exonuclease activity, and processivity are presented. These methods should be applicable to all DNA exonucleases, and to some extent endonucleases.  more » « less
Award ID(s):
1716269
PAR ID:
10065703
Author(s) / Creator(s):
Date Published:
Journal Name:
Methods in enzymology
Volume:
600
ISSN:
0076-6879
Page Range / eLocation ID:
135-156
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A sensitive label-free fluorescence assay for monitoring T4 polynucleotide kinase (T4 PNK) activity and inhibition was developed based on a coupled λ exonuclease cleavage reaction and SYBR Green I. In this assay, a double-stranded DNA (dsDNA) was stained with SYBR Green I and used as a substrate for T4 PNK. After the 5′-hydroxyl termini of the dsDNA was phosphorylated by the T4 PNK, the coupled λ exonuclease began to digest the dsDNA to form mononucletides and single-stranded DNA (ssDNA). At this moment, the fluorescence intensity of the SYBR Green I decreased because of less affinity with ssDNA than dsDNA. The decreasing extent was proportional to the concentration of the T4 PNK. After optimization of the detection conditions, including the concentration of ATP, amount of λ exonuclease and reaction time, the activity of T4 PNK was monitored by the fluorescence measurement, with the limit of detection of 0.11 U mL −1 and good linear correlation between 0.25–1.00 U mL −1 ( R 2 = 0.9896). In this assay, no label was needed for fluorescence detection. Moreover, the inhibition behaviors of the T4 PNK's inhibitors were evaluated by this assay. The result indicated the potential of using this assay for monitoring of the phosphorylation-related process. 
    more » « less
  2. Recombineering is an essential tool for molecular biologists, allowing for the facile and efficient manipulation of bacterial genomes directly in cells without the need for costly and laborious in vitro manipulations involving restriction enzymes. The main workhorses behind recombineering are bacteriophage proteins that promote the single-strand annealing (SSA) homologous recombination pathway to repair double-stranded DNA breaks. While there have been several reviews examining recombineering methods and applications, comparatively few have focused on the mechanisms of the proteins that are the key players in the SSA pathway: a 5′→3′ exonuclease and a single-strand annealing protein (SSAP or “annealase”). This review dives into the structures and functions of the two SSA recombination systems that were the first to be developed for recombineering in E. coli: the RecET system from E. coli Rac prophage and the λRed system from bacteriophage λ. By comparing the structures of the RecT and Redβ annealases, and the RecE and λExo exonucleases, we provide new insights into how the structures of these proteins dictate their function. Examining the sequence conservation of the λExo and RecE exonucleases gives more profound insights into their critical functional features. Ultimately, as recombineering accelerates and evolves in the laboratory, a better understanding of the mechanisms of the proteins behind this powerful technique will drive the development of improved and expanded capabilities in the future. 
    more » « less
  3. Abstract TatD enzymes are evolutionarily conserved deoxyribonucleases associated with DNA repair, apoptosis, development, and parasite virulence. Three TatD paralogs exist in humans, but their nuclease functions are unknown. Here, we describe the nuclease activities of two of the three human TatD paralogs, TATDN1 and TATDN3, which represent two phylogenetically distinct clades based on unique active site motifs. We found that in addition to 3′-5′ exonuclease activity associated with other TatD proteins, both TATDN1 and TATDN3 exhibited apurinic/apyrimidinic (AP) endonuclease activity. The AP endonuclease activity was observed only in double-stranded DNA, whereas exonuclease activity was operative primarily in single-stranded DNA. Both nuclease activities were observed in the presence of Mg2+ or Mn2+, and we identified several divalent metal cofactors that inhibited exonuclease and supported AP endonuclease activity. Biochemical analysis and a crystal structure of TATDN1 bound to 2′-deoxyadenosine 5′-monophosphate in the active site are consistent with two-metal ion catalysis, and we identify several residues that differentiate nuclease activities in the two proteins. In addition, we show that the three Escherichia coli TatD paralogs are also AP endonucleases, indicating that this activity is conserved across evolution. Together, these results indicate that TatD enzymes constitute a family of ancient AP endonucleases. 
    more » « less
  4. Abstract CRISPR–Cas adaptive immune systems capture DNA fragments from invading mobile genetic elements and integrate them into the host genome to provide a template for RNA-guided immunity1. CRISPR systems maintain genome integrity and avoid autoimmunity by distinguishing between self and non-self, a process for which the CRISPR/Cas1–Cas2 integrase is necessary but not sufficient2–5. In some microorganisms, the Cas4 endonuclease assists CRISPR adaptation6,7, but many CRISPR–Cas systems lack Cas48. Here we show here that an elegant alternative pathway in a type I-E system uses an internal DnaQ-like exonuclease (DEDDh) to select and process DNA for integration using the protospacer adjacent motif (PAM). The natural Cas1–Cas2/exonuclease fusion (trimmer-integrase) catalyses coordinated DNA capture, trimming and integration. Five cryo-electron microscopy structures of the CRISPR trimmer-integrase, visualized both before and during DNA integration, show how asymmetric processing generates size-defined, PAM-containing substrates. Before genome integration, the PAM sequence is released by Cas1 and cleaved by the exonuclease, marking inserted DNA as self and preventing aberrant CRISPR targeting of the host. Together, these data support a model in which CRISPR systems lacking Cas4 use fused or recruited9,10exonucleases for faithful acquisition of new CRISPR immune sequences. 
    more » « less
  5. The 3′–5′ exonuclease enzyme plays a dominant role in multiple pivotal physiological activities, such as DNA replication and repair processes. In this study, we designed a sensitive graphene oxide (GO)-based probe for the detection of exonuclease enzymatic activity. In the absence of Exo III, the strong π–π interaction between the fluorophore-tagged DNA and GO causes the efficient fluorescence quenching via a fluorescence resonance energy transfer (FRET). In contrast, in the presence of Exo III, the fluorophore-tagged 3′-hydroxyl termini of the DNA probe was digested by Exo III to set the fluorophore free from adsorption when GO was introduced, causing an inefficient fluorescence quenching. As a result, the fluorescence intensity of the sensor was found to be proportional to the concentration of Exo III; towards the detection of Exo III, this simple GO-based probe demonstrated a highly sensitive and selective linear response in the low detection range from 0.01 U mL −1 to 0.5 U mL −1 and with the limit of detection (LOD) of 0.001 U mL −1 . Compared with other fluorescent probes, this assay exhibited superior sensitivity and selectivity in both buffer and fetal bovine serum samples, in addition to being cost effective and having a simple setup. 
    more » « less