skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Species invasions shift microbial phenology in a two-decade freshwater time series
Invasive species impart abrupt changes on ecosystems, but their impacts on microbial communities are often overlooked. We paired a 20 y freshwater microbial community time series with zooplankton and phytoplankton counts, rich environmental data, and a 6 y cyanotoxin time series. We observed strong microbial phenological patterns that were disrupted by the invasions of spiny water flea ( Bythotrephes cederströmii ) and zebra mussels ( Dreissena polymorpha ). First, we detected shifts in Cyanobacteria phenology. After the spiny water flea invasion, Cyanobacteria dominance crept earlier into clearwater; and after the zebra mussel invasion, Cyanobacteria abundance crept even earlier into the diatom-dominated spring. During summer, the spiny water flea invasion sparked a cascade of shifting diversity where zooplankton diversity decreased and Cyanobacteria diversity increased. Second, we detected shifts in cyanotoxin phenology. After the zebra mussel invasion, microcystin increased in early summer and the duration of toxin production increased by over a month. Third, we observed shifts in heterotrophic bacteria phenology. The Bacteroidota phylum and members of the acI Nanopelagicales lineage were differentially more abundant. The proportion of the bacterial community that changed differed by season; spring and clearwater communities changed most following the spiny water flea invasion that lessened clearwater intensity, while summer communities changed least following the zebra mussel invasion despite the shifts in Cyanobacteria diversity and toxicity. A modeling framework identified the invasions as primary drivers of the observed phenological changes. These long-term invasion-mediated shifts in microbial phenology demonstrate the interconnectedness of microbes with the broader food web and their susceptibility to long-term environmental change.  more » « less
Award ID(s):
0702395 1344254 2011002 2025982
PAR ID:
10400713
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
11
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Species invasions can disrupt aquatic ecosystems by re‐wiring food webs. A trophic cascade triggered by the invasion of the predatory zooplankter spiny water flea (Bythotrephes cederströmii) resulted in increased phytoplankton due to decreased zooplankton grazing. Here, we show that increased phytoplankton biomass led to an increase in lake anoxia. The temporal and spatial extent of anoxia experienced a step change increase coincident with the invasion, and anoxic factor increased by 11 d. Post‐invasion, anoxia established more quickly following spring stratification, driven by an increase in phytoplankton biomass. A shift in spring phytoplankton phenology encompassed both abundance and community composition. Diatoms (Bacillaryophyta) drove the increase in spring phytoplankton biomass, but not all phytoplankton community members increased, shifting the community composition. We infer that increased phytoplankton biomass increased labile organic matter and drove hypolimnetic oxygen consumption. These results demonstrate how a species invasion can shift lake phenology and biogeochemistry. 
    more » « less
  2. Abstract BackgroundProtists, single-celled eukaryotic organisms, are critical to food web ecology, contributing to primary productivity and connecting small bacteria and archaea to higher trophic levels. Lake Mendota is a large, eutrophic natural lake that is a Long-Term Ecological Research site and among the world’s best-studied freshwater systems. Metagenomic samples have been collected and shotgun sequenced from Lake Mendota for the last 20 years. Here, we analyze this comprehensive time series to infer changes to the structure and function of the protistan community and to hypothesize about their interactions with bacteria. ResultsBased on small subunit rRNA genes extracted from the metagenomes and metagenome-assembled genomes of microeukaryotes, we identify shifts in the eukaryotic phytoplankton community over time, which we predict to be a consequence of reduced zooplankton grazing pressures after the invasion of a invasive predator (the spiny water flea) to the lake. The metagenomic data also reveal the presence of the spiny water flea and the zebra mussel, a second invasive species to Lake Mendota, prior to their visual identification during routine monitoring. Furthermore, we use species co-occurrence and co-abundance analysis to connect the protistan community with bacterial taxa. Correlation analysis suggests that protists and bacteria may interact or respond similarly to environmental conditions. Cryptophytes declined in the second decade of the timeseries, while many alveolate groups (e.g., ciliates and dinoflagellates) and diatoms increased in abundance, changes that have implications for food web efficiency in Lake Mendota. ConclusionsWe demonstrate that metagenomic sequence-based community analysis can complement existing efforts to monitor protists in Lake Mendota based on microscopy-based count surveys. We observed patterns of seasonal abundance in microeukaryotes in Lake Mendota that corroborated expectations from other systems, including high abundance of cryptophytes in winter and diatoms in fall and spring, but with much higher resolution than previous surveys. Our study identified long-term changes in the abundance of eukaryotic microbes and provided context for the known establishment of an invasive species that catalyzes a trophic cascade involving protists. Our findings are important for decoding potential long-term consequences of human interventions, including invasive species introduction. 
    more » « less
  3. Beginning in 2016, vertical tows with a special zooplankton net were collected in the lakes of the Yahara River specifically for the invasive Bythotrephes longimanus (spiny water flea). The net has a 400 micrometer mesh with a 0.5 meter diameter opening. Individuals are simply counted, and density is determined to be the number of individuals divided by the total water volume of each tow. The depth of the tow, and therefore the tow volume, varies by lake. Additional sampling for spiny water flea occurred 2009 - 2014 as a part of graduate student research (dataset knb-lter-ntl.343). Spiny water flea are also captured occasionally during our standard zooplankton tows of the southern lakes (knb-lter-ntl.90). 
    more » « less
  4. Beisner, Beatrix E (Ed.)
    Abstract The prolonged ice cover inherent to alpine lakes incurs unique challenges for aquatic life, which are compounded by recent shifts in the timing and duration of ice cover. To understand the responses of alpine zooplankton, we analyzed a decade (2009–2019) of open-water samples of Daphnia pulicaria and Hesperodiaptomus shoshone for growth, reproduction and ultraviolet radiation tolerance. Due to reproductive differences between taxa, we expected clonal cladocerans to exhibit a more rapid response to ice-cover changes relative to copepods dependent on sexual reproduction. For D. pulicaria, biomass and melanization were lowest after ice clearance and increased through summer, whereas fecundity was highest shortly after ice-off. For H. shoshone, biomass and fecundity peaked later but were generally less variable through time. Among years, ice clearance date varied by 49 days; years with earlier ice-out and a longer growing season supported higher D. pulicaria biomass and clutch sizes along with greater H. shoshone fecundity. While these large-bodied, stress tolerant zooplankton taxa were relatively resilient to phenological shifts during the observation period, continued losses of ice cover may create unfavorably warm conditions and facilitate invasion by montane species, emphasizing the value of long-term data in assessing future changes to these sensitive ecosystems. 
    more » « less
  5. Abstract Species with different life histories and communities that vary in their seasonal constraints tend to shift their phenology (seasonal timing) differentially in response to climate warming.We investigate how these variable phenological shifts aggregate to influence phenological overlap within communities. Phenological advancements of later season species and extended durations of early season species may increase phenological overlap, with implications for species' interactions such as resource competition.We leverage extensive historic (1958–1960) and recent (2006–2015) weekly survey data for communities of grasshoppers along a montane elevation gradient to assess the impact of climate on shifts in the phenology and abundance distributions of species. We then examine how these responses are influenced by the seasonal timing of species and elevation, and how in aggregate they influence degrees of phenological overlap within communities.In warmer years, abundance distributions shift earlier in the season and become broader. Total abundance responds variably among species and we do not detect a significant response across species. Shifts in abundance distributions are not strongly shaped by species' seasonal timing or sites of variable elevations. The area of phenological overlap increases in warmer years due to shifts in the relative seasonal timing of compared species. Species that overwinter as nymphs increasingly overlap with later season species that advance their phenology. The days of phenological overlap also increase in warm years but the response varies across sites of variable elevation. Our phenological overlap metric based on comparing single events—the dates of peak abundance—does not shift significantly with warming.Phenological shifts are more complex than shifts in single dates such as first occurrence. As abundance distributions shift earlier and become broader in warm years, phenological overlap increases. Our analysis suggests that overall grasshopper abundance is relatively robust to climate and associated phenological shifts but we find that increased overlap can decrease abundance, potentially by strengthening species interactions such as resource competition. 
    more » « less