As we prepare new engineers to take on the fourth industrial revolution, engineering faculty are tasked with selecting, learning, evaluating, using, and teaching new technologies to apprentice engineers. To understand how these important tasks are being achieved, 21 engineering faculty members in a STEMfocused Midwest US university were interviewed. Engineering faculty showed an awareness of the rhetorical power of manuals and other instructional resources. Unfortunately, these resources are often inadequately designed to meet the unique needs of engineering faculty. In this paper, we propose that there is an exigency for a faculty-focused subgenre of instructional writing which addresses the needs of engineering instructors who teach students how to use technology while simultaneously learning how to use it themselves. Because of the overwhelming roles that faculty perform, we propose that the composition of this sub-genre should be the duty of technical writers who work closely with technology developers and engineering faculty. We forward that such a subgenre may find space in digital and non-digital learning resources through the inclusion of both the technical information necessary to use the technology, as well as pedagogical tools and activities to support student learning. These materials should be released in accordance with technology updates to ensure faculty are best positioned to teach the most current technologies. The proposed faculty-focused instructional writing subgenre may have implications beyond engineering education, because the need for learning resources may not be unique to engineering faculty, and likely exists for all university faculty learning and introducing new technologies within their courses.
more »
« less
What you see is what you get? – Relating eye-tracking metrics to students’ attention to game elements
Though engineering digital game inclusion in undergraduate classrooms has steadily increased over the last two decades for in-person courses, their use has exponentially increased in remote and contactless higher education learning environments. Studies exploring student technological acceptance of and content mastery from the use of engineering digital games have provided mixed results in terms of student enjoyment, engagement, and game effectiveness. The majority of these studies have relied on pre- and post-questionnaires to assess differences in students’ gaming experiences and performance in the game and learning environment. However, quantitative methods such as the measurement of physiological responses during gameplay have been less explored for the exploration of student engagement and education. The goal of this work is to explore how a set of eye - tracking metrics can be related to gamer attention to in-game stimuli and game interface areas of interest.
more »
« less
- Award ID(s):
- 1830812
- PAR ID:
- 10400764
- Date Published:
- Journal Name:
- Conference proceedings Frontiers in Education Conference
- ISSN:
- 1539-4565
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ethics education has been recognized as increasingly important to engineering over the past two decades, although disagreement exists concerning how ethics can and should be taught in the classroom. With active learning strategies becoming a preferred method of instruction, a collaboration of authors from four universities (University of Pittsburgh, University of Connecticut, Rowan University and New Jersey Institute of Technology) are investigating how game-based or playful learning with strongly situated components can influence first-year engineering students’ ethical knowledge, awareness, and decision making. This paper offers an overview and results of the progress to date of this three year, NSF Improving Undergraduate STEM Education (IUSE) grant that aims to (1) characterize the ethical awareness and decision making of first-year engineering students, (2) develop game-based learning interventions focused on ethical decision making, and (3) determine how (and why) game-based approaches affect students’ ethical awareness in engineering and the advantages of such approaches over non game-based approaches. Now in its second year, the authors have conducted a preliminary analysis of first-year students' ethical knowledge and organization via a concept mapping approach and have measured students' ethical reasoning using the Defining Issues Test 2 (DIT2) and Engineering Ethics Reasoning Instrument (EERI). Further, the authors have developed a suite of ethics-driven games that have been implemented across three of the universities, engaging over 400 first-year engineering students. Evaluation data has also been gathered for further game development and to assess initial student engagement and learning. Year 1 has provided insight into where first-year engineering students “are at” in terms of ethical knowledge and reasoning when they come to college, and how game-based instruction can be effective in the development of these students into moral agents who understand the consequences of their decisions. Further results from this investigation will provide the engineering education community with a set of impactful and research-based playful learning pedagogy and assessment that will help students confront social and ethical dilemmas in their professional lives.more » « less
-
null (Ed.)Gamification – using game mechanics for affording gameful experiences in non-game contexts – is getting increased attention in the educational field. However, its motivational mechanisms, intended to enhance student learning, are still not sufficiently understood. In this paper, we present an empirical study on the use of one of the most popular gamification elements, badges. The goal is to shed some light on their impact on student engagement and motivation. The study results suggest that while the badges improve student engagement and academic performance, they do not affect the student’s intrinsic motivation. However, we speculate that they foster internalization of the learning-related extrinsic motivators’ values, which results in increased engagement in the learning activities.more » « less
-
An increasingly global environment expects graduating Engineering students to perform, live and work across cultures. Most intercultural competence research and associated global engineering education is focused on developing the global engineering skill set through long-term travel experiences such as study abroad programs. These programs can be expensive from both a time and money standpoint, limiting the participation to more privileged members of a community, and are not scalable to support broader participation. This work-in-progress addresses this research gap by focusing on the development of the students’ global learner mindset without requiring extensive travel. The project will investigate four different global engagement interventions, including the use of engineering case studies, the intentional formation of multi-national student teams, a Collaborative Online International Learning (COIL) research project, and a community engaged project within a short course. These interventions can be used to develop a holistic global learner mindset and global engineering education approach to foster global competence in undergraduate engineering students. The four global engagement interventions will be grounded in the global engineering competency (GEC) theoretical framework and assessed for their ability to foster a global learner mindset in engineering students. A mixed-methods approach will be used to assess students’ global learner mindset and skill set. This research will use the Global Engagement Survey (GES), the Global Engineering Competency Scale (GECS) and specific questions developed by the researchers to evaluate improvements in the participating students’ global engineering skill set and answer specific research questions including: 1) To what extent can global competence be developed in engineering students through the use of the proposed global engagement interventions; and 2) what are the relative strengths of each of the proposed global engagement interventions in developing global engineering competence? Combined, these research measures will provide both an accurate picture of how each global engagement intervention impacts the formation of a global learner mindset in engineering education, and also its associated ability to develop and/or improve global engineering skills. The outcomes of this study will generate valuable knowledge to understand how each global engagement intervention impacts the formation of global engineering competence. In this work-in-progress study, the authors discuss the four global engagement interventions with specific learning objectives that have been mapped to the overall student outcomes for the project. These objectives have also been mapped to the GES and GECS instruments. Finally the faculty members have developed qualitative tools to augment the GES and GECS to identify the global engineering skill sets each intervention is generating. This paper lays the foundation before implementing the interventions and performing their associated assessments over the several subsequent semesters.more » « less
-
An increasingly global environment expects graduating Engineering students to perform, live and work across cultures. Most intercultural competence research and associated global engineering education is focused on developing the global engineering skill set through long-term travel experiences such as study abroad programs. These programs can be expensive from both a time and money standpoint, limiting the participation to more privileged members of a community, and are not scalable to support broader participation. This work-in-progress addresses this research gap by focusing on the development of the students’ global learner mindset without requiring extensive travel. The project will investigate four different global engagement interventions, including the use of engineering case studies, the intentional formation of multi-national student teams, a Collaborative Online International Learning (COIL) research project, and a community engaged project within a short course. These interventions can be used to develop a holistic global learner mindset and global engineering education approach to foster global competence in undergraduate engineering students. The four global engagement interventions will be grounded in the global engineering competency (GEC) theoretical framework and assessed for their ability to foster a global learner mindset in engineering students. A mixed-methods approach will be used to assess students’ global learner mindset and skill set. This research will use the Global Engagement Survey (GES), the Global Engineering Competency Scale (GECS) and specific questions developed by the researchers to evaluate improvements in the participating students’ global engineering skill set and answer specific research questions including: 1) To what extent can global competence be developed in engineering students through the use of the proposed global engagement interventions; and 2) what are the relative strengths of each of the proposed global engagement interventions in developing global engineering competence? Combined, these research measures will provide both an accurate picture of how each global engagement intervention impacts the formation of a global learner mindset in engineering education, and also its associated ability to develop and/or improve global engineering skills. The outcomes of this study will generate valuable knowledge to understand how each global engagement intervention impacts the formation of global engineering competence. In this work-in-progress study, the authors discuss the four global engagement interventions with specific learning objectives that have been mapped to the overall student outcomes for the project. These objectives have also been mapped to the GES and GECS instruments. Finally the faculty members have developed qualitative tools to augment the GES and GECS to identify the global engineering skill sets each intervention is generating. This paper lays the foundation before implementing the interventions and performing their associated assessments over the several subsequent semesters.more » « less
An official website of the United States government

