Certain patterns of symmetry fractionalization in topologicallyordered phases of matter are anomalous, in the sense that they can onlyoccur at the surface of a higher dimensional symmetry-protectedtopological (SPT) state. An important question is to determine how tocompute this anomaly, which means determining which SPT hosts a givensymmetry-enriched topological order at its surface. While special casesare known, a general method to compute the anomaly has so far beenlacking. In this paper we propose a general method to compute relativeanomalies between different symmetry fractionalization classes of agiven (2+1)D topological order. This method applies to all types ofsymmetry actions, including anyon-permuting symmetries and generalspace-time reflection symmetries. We demonstrate compatibility of therelative anomaly formula with previous results for diagnosing anomaliesfor \mathbb{Z}_2^{T} ℤ 2 T space-time reflection symmetry (e.g. where time-reversal squares to theidentity) and mixed anomalies for U(1) \times \mathbb{Z}_2^{T} U ( 1 ) × ℤ 2 T and U(1) \rtimes \mathbb{Z}_2^{T} U ( 1 ) ⋊ ℤ 2 T symmetries. We also study a number of additional examples, includingcases where space-time reflection symmetries are intertwined innon-trivial ways with unitary symmetries, such as \mathbb{Z}_4^{T} ℤ 4 T and mixed anomalies for \mathbb{Z}_2 \times \mathbb{Z}_2^{T} ℤ 2 × ℤ 2 T symmetry, and unitary \mathbb{Z}_2 \times \mathbb{Z}_2 ℤ 2 × ℤ 2 symmetry with non-trivial anyon permutations.
more »
« less
Measuring Rényi entanglement entropy with high efficiency and precision in quantum Monte Carlo simulations
Abstract We develop a nonequilibrium increment method in quantum Monte Carlo simulations to obtain the Rényi entanglement entropy of various quantum many-body systems with high efficiency and precision. To demonstrate its power, we show the results on a few important yet difficult (2 + 1) d quantum lattice models, ranging from the Heisenberg quantum antiferromagnet with spontaneous symmetry breaking, the quantum critical point with O(3) conformal field theory (CFT) to the toric code $${{\mathbb{Z}}}_{2}$$ Z 2 topological ordered state and the Kagome $${{\mathbb{Z}}}_{2}$$ Z 2 quantum spin liquid model with frustration and multi-spin interactions. In all these cases, our method either reveals the precise CFT data from the logarithmic correction or extracts the quantum dimension in topological order, from the dominant area law in finite-size scaling, with very large system sizes, controlled errorbars, and minimal computational costs. Our method, therefore, establishes a controlled and practical computation paradigm to obtain the difficult yet important universal properties in highly entangled quantum matter.
more »
« less
- Award ID(s):
- 1846109
- PAR ID:
- 10400891
- Date Published:
- Journal Name:
- npj Quantum Materials
- Volume:
- 7
- Issue:
- 1
- ISSN:
- 2397-4648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The experimental discovery of the fractional Hall conductivity in two-dimensional electron gases revealed new types of quantum particles, called anyons, which are beyond bosons and fermions as they possess fractionalized exchange statistics. These anyons are usually studied deep inside an insulating topological phase. It is natural to ask whether such fractionalization can be detected more broadly, say near a phase transition from a conventional to a topological phase. To answer this question, we study a strongly correlated quantum phase transition between a topological state, called a $${{\mathbb{Z}}}_{2}$$ Z 2 quantum spin liquid, and a conventional superfluid using large-scale quantum Monte Carlo simulations. Our results show that the universal conductivity at the quantum critical point becomes a simple fraction of its value at the conventional insulator-to-superfluid transition. Moreover, a dynamically self-dual optical conductivity emerges at low temperatures above the transition point, indicating the presence of the elusive vison particles. Our study opens the door for the experimental detection of anyons in a broader regime, and has ramifications in the study of quantum materials, programmable quantum simulators, and ultra-cold atomic gases. In the latter case, we discuss the feasibility of measurements in optical lattices using current techniques.more » « less
-
Abstract We determine the phase diagram of a bilayer, Yao-Lee spin-orbital model with inter-layer interactions (J), for several stackings and moiré superlattices. For AA stacking, a gapped$${{\mathbb{Z}}}_{2}$$ quantum spin liquid phase emerges at a finiteJc. We show that this phase survives in the well-controlled large-Jlimit, where an isotropic honeycomb toric code emerges. For moiré superlattices, a finite-qinter-layer hybridization is stabilized. This connects inequivalent Dirac points, effectively ‘untwisting’ the system. Our study thus provides insight into the spin-liquid phases of bilayer spin-orbital Kitaev materials.more » « less
-
(3+1)D topological phases of matter can host a broad class of non-trivial topological defects of codimension-1, 2, and 3, of which the well-known point charges and flux loops are special cases. The complete algebraic structure of these defects defines a higher category, and can be viewed as an emergent higher symmetry. This plays a crucial role both in the classification of phases of matter and the possible fault-tolerant logical operations in topological quantum error-correcting codes. In this paper, we study several examples of such higher codimension defects from distinct perspectives. We mainly study a class of invertible codimension-2 topological defects, which we refer to as twist strings. We provide a number of general constructions for twist strings, in terms of gauging lower dimensional invertible phases, layer constructions, and condensation defects. We study some special examples in the context of \mathbb{Z}_2 ℤ 2 gauge theory with fermionic charges, in \mathbb{Z}_2 \times \mathbb{Z}_2 ℤ 2 × ℤ 2 gauge theory with bosonic charges, and also in non-Abelian discrete gauge theories based on dihedral ( D_n D n ) and alternating ( A_6 A 6 ) groups. The intersection between twist strings and Abelian flux loops sources Abelian point charges, which defines an H^4 H 4 cohomology class that characterizes part of an underlying 3-group symmetry of the topological order. The equations involving background gauge fields for the 3-group symmetry have been explicitly written down for various cases. We also study examples of twist strings interacting with non-Abelian flux loops (defining part of a non-invertible higher symmetry), examples of non-invertible codimension-2 defects, and examples of the interplay of codimension-2 defects with codimension-1 defects. We also find an example of geometric, not fully topological, twist strings in (3+1)D A_6 A 6 gauge theory.more » « less
-
A unitary fusion category is called $$\mathbb{Z}/2\mathbb{Z}$$-quadratic if it has a $$\mathbb{Z}/2\mathbb{Z}$$ group of invertible objects and one other orbit of simple objects under the action of this group. We give a complete classification of $$\mathbb{Z}/2\mathbb{Z}$$-quadratic unitary fusion categories. The main tools for this classification are skein theory, a generalization of Ostrik's results on formal codegrees to analyze the induction of the group elements to the center, and a computation similar to Larson's rank-finiteness bound for $$\mathbb{Z}/3\mathbb{Z}$$-near group pseudounitary fusion categories. This last computation is contained in an appendix coauthored with attendees from the 2014 AMS MRC on Mathematics of Quantum Phases of Matter and Quantum Information.more » « less