Certain patterns of symmetry fractionalization in topologicallyordered phases of matter are anomalous, in the sense that they can onlyoccur at the surface of a higher dimensional symmetry-protectedtopological (SPT) state. An important question is to determine how tocompute this anomaly, which means determining which SPT hosts a givensymmetry-enriched topological order at its surface. While special casesare known, a general method to compute the anomaly has so far beenlacking. In this paper we propose a general method to compute relativeanomalies between different symmetry fractionalization classes of agiven (2+1)D topological order. This method applies to all types ofsymmetry actions, including anyon-permuting symmetries and generalspace-time reflection symmetries. We demonstrate compatibility of therelative anomaly formula with previous results for diagnosing anomaliesfor \mathbb{Z}_2^{T} ℤ 2 T space-time reflection symmetry (e.g. where time-reversal squares to theidentity) and mixed anomalies for U(1) \times \mathbb{Z}_2^{T} U ( 1 ) × ℤ 2 T and U(1) \rtimes \mathbb{Z}_2^{T} U ( 1 ) ⋊ ℤ 2 T symmetries. We also study a number of additional examples, includingcases where space-time reflection symmetries are intertwined innon-trivial ways with unitary symmetries, such as \mathbb{Z}_4^{T} ℤ 4 T and mixed anomalies for \mathbb{Z}_2 \times \mathbb{Z}_2^{T} ℤ 2 × ℤ 2 T symmetry, and unitary \mathbb{Z}_2 \times \mathbb{Z}_2 ℤ 2 × ℤ 2 symmetry with non-trivial anyon permutations.
more »
« less
Measuring Rényi entanglement entropy with high efficiency and precision in quantum Monte Carlo simulations
Abstract We develop a nonequilibrium increment method in quantum Monte Carlo simulations to obtain the Rényi entanglement entropy of various quantum many-body systems with high efficiency and precision. To demonstrate its power, we show the results on a few important yet difficult (2 + 1) d quantum lattice models, ranging from the Heisenberg quantum antiferromagnet with spontaneous symmetry breaking, the quantum critical point with O(3) conformal field theory (CFT) to the toric code $${{\mathbb{Z}}}_{2}$$ Z 2 topological ordered state and the Kagome $${{\mathbb{Z}}}_{2}$$ Z 2 quantum spin liquid model with frustration and multi-spin interactions. In all these cases, our method either reveals the precise CFT data from the logarithmic correction or extracts the quantum dimension in topological order, from the dominant area law in finite-size scaling, with very large system sizes, controlled errorbars, and minimal computational costs. Our method, therefore, establishes a controlled and practical computation paradigm to obtain the difficult yet important universal properties in highly entangled quantum matter.
more »
« less
- Award ID(s):
- 1846109
- PAR ID:
- 10400891
- Date Published:
- Journal Name:
- npj Quantum Materials
- Volume:
- 7
- Issue:
- 1
- ISSN:
- 2397-4648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The experimental discovery of the fractional Hall conductivity in two-dimensional electron gases revealed new types of quantum particles, called anyons, which are beyond bosons and fermions as they possess fractionalized exchange statistics. These anyons are usually studied deep inside an insulating topological phase. It is natural to ask whether such fractionalization can be detected more broadly, say near a phase transition from a conventional to a topological phase. To answer this question, we study a strongly correlated quantum phase transition between a topological state, called a $${{\mathbb{Z}}}_{2}$$ Z 2 quantum spin liquid, and a conventional superfluid using large-scale quantum Monte Carlo simulations. Our results show that the universal conductivity at the quantum critical point becomes a simple fraction of its value at the conventional insulator-to-superfluid transition. Moreover, a dynamically self-dual optical conductivity emerges at low temperatures above the transition point, indicating the presence of the elusive vison particles. Our study opens the door for the experimental detection of anyons in a broader regime, and has ramifications in the study of quantum materials, programmable quantum simulators, and ultra-cold atomic gases. In the latter case, we discuss the feasibility of measurements in optical lattices using current techniques.more » « less
-
Abstract We introduce a set of axioms for locally topologically ordered quantum spin systems in terms of nets of local ground state projections, and we show they are satisfied by Kitaev’s Toric Code and Levin-Wen type models. For a locally topologically ordered spin system on$$\mathbb {Z}^{k}$$, we define a local net of boundary algebras on$$\mathbb {Z}^{k-1}$$, which provides a mathematically precise algebraic description of the holographic dual of the bulk topological order. We construct a canonical quantum channel so that states on the boundary quasi-local algebra parameterize bulk-boundary states without reference to a boundary Hamiltonian. As a corollary, we obtain a new proof of a recent result of Ogata [Oga24] that the bulk cone von Neumann algebra in the Toric Code is of type$$\mathrm {II}$$, and we show that Levin-Wen models can have cone algebras of type$$\mathrm {III}$$. Finally, we argue that the braided tensor category of DHR bimodules for the net of boundary algebras characterizes the bulk topological order in (2+1)D, and can also be used to characterize the topological order of boundary states.more » « less
-
Abstract We determine the phase diagram of a bilayer, Yao-Lee spin-orbital model with inter-layer interactions (J), for several stackings and moiré superlattices. For AA stacking, a gapped$${{\mathbb{Z}}}_{2}$$ quantum spin liquid phase emerges at a finiteJc. We show that this phase survives in the well-controlled large-Jlimit, where an isotropic honeycomb toric code emerges. For moiré superlattices, a finite-qinter-layer hybridization is stabilized. This connects inequivalent Dirac points, effectively ‘untwisting’ the system. Our study thus provides insight into the spin-liquid phases of bilayer spin-orbital Kitaev materials.more » « less
-
For a net of C*-algebras on a discrete metric space, we introduce a bimodule version of the DHR tensor category and show that it is an invariant of quasi-local algebras under isomorphisms with bounded spread. For abstract spin systems on a latticeL\subseteq \mathbb{R}^{n}satisfying a weak version of Haag duality, we construct a braiding on these categories. Applying the general theory to quasi-local algebrasAof operators on a lattice invariant under a (categorical) symmetry, we obtain a homomorphism from the group of symmetric QCA to\mathbf{Aut}_{\mathrm{br}}(\mathbf{DHR}(A)), containing symmetric finite-depth circuits in the kernel. For a spin chain with fusion categorical symmetry\mathcal{D}, we show that the DHR category of the quasi-local algebra of symmetric operators is equivalent to the Drinfeld center\mathcal{Z}(\mathcal{D}). We use this to show that, for the double spin-flip action\mathbb{Z}/2\mathbb{Z}\times \mathbb{Z}/2\mathbb{Z}\curvearrowright \mathbb{C}^{2}\otimes \mathbb{C}^{2}, the group of symmetric QCA modulo symmetric finite-depth circuits in 1D contains a copy ofS_{3}; hence, it is non-abelian, in contrast to the case with no symmetry.more » « less
An official website of the United States government

