skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DHR bimodules of quasi-local algebras and symmetric quantum cellular automata
For a net of C*-algebras on a discrete metric space, we introduce a bimodule version of the DHR tensor category and show that it is an invariant of quasi-local algebras under isomorphisms with bounded spread. For abstract spin systems on a latticeL\subseteq \mathbb{R}^{n}satisfying a weak version of Haag duality, we construct a braiding on these categories. Applying the general theory to quasi-local algebrasAof operators on a lattice invariant under a (categorical) symmetry, we obtain a homomorphism from the group of symmetric QCA to\mathbf{Aut}_{\mathrm{br}}(\mathbf{DHR}(A)), containing symmetric finite-depth circuits in the kernel. For a spin chain with fusion categorical symmetry\mathcal{D}, we show that the DHR category of the quasi-local algebra of symmetric operators is equivalent to the Drinfeld center\mathcal{Z}(\mathcal{D}). We use this to show that, for the double spin-flip action\mathbb{Z}/2\mathbb{Z}\times \mathbb{Z}/2\mathbb{Z}\curvearrowright \mathbb{C}^{2}\otimes \mathbb{C}^{2}, the group of symmetric QCA modulo symmetric finite-depth circuits in 1D contains a copy ofS_{3}; hence, it is non-abelian, in contrast to the case with no symmetry.  more » « less
Award ID(s):
2247202
PAR ID:
10618289
Author(s) / Creator(s):
Publisher / Repository:
EMS
Date Published:
Journal Name:
Quantum Topology
Volume:
15
Issue:
3
ISSN:
1663-487X
Page Range / eLocation ID:
633 to 686
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We introduce a set of axioms for locally topologically ordered quantum spin systems in terms of nets of local ground state projections, and we show they are satisfied by Kitaev’s Toric Code and Levin-Wen type models. For a locally topologically ordered spin system on$$\mathbb {Z}^{k}$$, we define a local net of boundary algebras on$$\mathbb {Z}^{k-1}$$, which provides a mathematically precise algebraic description of the holographic dual of the bulk topological order. We construct a canonical quantum channel so that states on the boundary quasi-local algebra parameterize bulk-boundary states without reference to a boundary Hamiltonian. As a corollary, we obtain a new proof of a recent result of Ogata [Oga24] that the bulk cone von Neumann algebra in the Toric Code is of type$$\mathrm {II}$$, and we show that Levin-Wen models can have cone algebras of type$$\mathrm {III}$$. Finally, we argue that the braided tensor category of DHR bimodules for the net of boundary algebras characterizes the bulk topological order in (2+1)D, and can also be used to characterize the topological order of boundary states. 
    more » « less
  2. Abstract Our work is motivated by obtaining solutions to the quantum reflection equation (qRE) by categorical methods. To start, given a braided monoidal category$${\mathcal {C}}$$and$${\mathcal {C}}$$-module category$${\mathcal {M}}$$, we introduce a version of the Drinfeld center$${\mathcal {Z}}({\mathcal {C}})$$of$${\mathcal {C}}$$adapted for$${\mathcal {M}}$$; we refer to this category as thereflective center$${\mathcal {E}}_{\mathcal {C}}({\mathcal {M}})$$of$${\mathcal {M}}$$. Just like$${\mathcal {Z}}({\mathcal {C}})$$is a canonical braided monoidal category attached to$${\mathcal {C}}$$, we show that$${\mathcal {E}}_{\mathcal {C}}({\mathcal {M}})$$is a canonical braided module category attached to$${\mathcal {M}}$$; its properties are investigated in detail. Our second goal pertains to when$${\mathcal {C}}$$is the category of modules over a quasitriangular Hopf algebraH, and$${\mathcal {M}}$$is the category of modules over anH-comodule algebraA. We show that the reflective center$${\mathcal {E}}_{\mathcal {C}}({\mathcal {M}})$$here is equivalent to a category of modules over an explicit algebra, denoted by$$R_H(A)$$, which we call thereflective algebraofA. This result is akin to$${\mathcal {Z}}({\mathcal {C}})$$being represented by the Drinfeld double$${\operatorname {Drin}}(H)$$ofH. We also study the properties of reflective algebras. Our third set of results is also in the Hopf setting above. We show that reflective algebras are quasitriangularH-comodule algebras, and we examine their corresponding quantumK-matrices; this yields solutions to the qRE. We also establish that the reflective algebra$$R_H(\mathbb {k})$$is an initial object in the category of quasitriangularH-comodule algebras, where$$\mathbb {k}$$is the ground field. The case whenHis the Drinfeld double of a finite group is illustrated. 
    more » « less
  3. Abstract Dirac rings are commutative algebras in the symmetric monoidal category of$$\mathbb {Z}$$-graded abelian groups with the Koszul sign in the symmetry isomorphism. In the prequel to this paper, we developed the commutative algebra of Dirac rings and defined the category of Dirac schemes. Here, we embed this category in the larger$$\infty $$-category of Dirac stacks, which also contains formal Dirac schemes, and develop the coherent cohomology of Dirac stacks. We apply the general theory to stable homotopy theory and use Quillen’s theorem on complex cobordism and Milnor’s theorem on the dual Steenrod algebra to identify the Dirac stacks corresponding to$$\operatorname {MU}$$and$$\mathbb {F}_p$$in terms of their functors of points. Finally, in an appendix, we develop a rudimentary theory of accessible presheaves. 
    more » « less
  4. Abstract We relate the Fukaya category of the symmetric power of a genus zero surface to deformed category$$\mathcal {O}$$ O of a cyclic hypertoric variety by establishing an isomorphism between algebras defined by Ozsváth–Szabó in Heegaard–Floer theory and Braden–Licata–Proudfoot–Webster in hypertoric geometry. The proof extends work of Karp–Williams on sign variation and the combinatorics of the$$m=1$$ m = 1 amplituhedron. We then use the algebras associated to cyclic arrangements to construct categorical actions of$$\mathfrak {gl}(1|1)$$ gl ( 1 | 1 ) , and generalize our isomorphism to give a conjectural algebraic description of the Fukaya category of a complexified hyperplane complement. 
    more » « less
  5. We consider solutions of the repulsive Vlasov–Poisson system which are a combination of a point charge and a small gas, i.e., measures of the form\delta_{(\mathcal{X}(t),\mathcal{V}(t))}+\mu^{2}d\mathbf{x}d\mathbf{v}for some(\mathcal{X}, \mathcal{V})\colon \mathbb{R}\to\mathbb{R}^{6}and a small gas distribution\mu\colon \mathbb{R}\to L^{2}_{\mathbf{x},\mathbf{v}}, and study asymptotic dynamics in the associated initial value problem. If initially suitable moments on\mu_{0}=\mu(t=0)are small, we obtain a global solution of the above form, and the electric field generated by the gas distribution \mudecays at an almost optimal rate. Assuming in addition boundedness of suitable derivatives of \mu_{0}, the electric field decays at an optimal rate, and we derive modified scattering dynamics for the motion of the point charge and the gas distribution. Our proof makes crucial use of the Hamiltonian structure. The linearized system is transport by the Kepler ODE, which we integrate exactly through an asymptotic action-angle transformation. Thanks to a precise understanding of the associated kinematics, moment and derivative control is achieved via a bootstrap analysis that relies on the decay of the electric field associated to\mu. The asymptotic behavior can then be deduced from the properties of Poisson brackets in asymptotic action coordinates. 
    more » « less