Abstract Intensification of livestock production has reduced heterogeneity in vegetative structure in managed grasslands, which has been linked to widespread declines in grassland songbird populations throughout North America. Patch-burn grazing management aims to restore some of that heterogeneity in vegetative structure by burning discrete pasture sections, so that cattle preferentially graze in recently burned areas. Although patch-burn grazing can increase reproductive success of grassland songbirds, we know little about possible interactions with regional variation in predator communities or brood parasite abundance, or annual variation in weather conditions. Using six years of data from two tallgrass prairie sites in eastern Kansas, USA, we tested effects of patch-burn grazing on the rates of brood parasitism, clutch size, nest survival, and fledging success of three common grassland songbirds, Dickcissels (Spiza americana), Eastern Meadowlarks (Sturnella magna), and Grasshopper Sparrows (Ammodramus savannarum), among pastures managed with patch-burn grazing versus pastures that were annually burned and either grazed or ungrazed. Dickcissel nests experienced lower parasitism (72.8 ± 4.6% SE vs. 89.1 ± 2.2%) and Eastern Meadowlarks had higher nest survival (63.2 ± 20.5% vs. 16.5 ± 3.5%) in annually burned and ungrazed pastures than pastures managed with patch-burn grazing. However, average number of host fledglings per nesting attempt did not differ among management treatments for any species. Annual variation in weather conditions had a large effect on vegetation structure, but not on reproductive success. Probability of brood parasitism was consistently high (25.5‒84.7%) and nest survival was consistently low (9.9–16.9%) for all species pooled across treatments, sites, and years, indicating that combined effects of predation, parasitism and drought can offset potential benefits of patch-burn grazing management previously found in tallgrass prairies. Although differences in reproductive success among management treatments were minimal, patch-burn grazing management could still benefit population dynamics of grassland songbirds in areas where nest predators and brood parasites are locally abundant by providing suitable nesting habitat for bird species that require greater amounts of vegetation cover and litter, generally not present in burned pastures.
more »
« less
Emigration and survival correlate with different precipitation metrics throughout a grassland songbird's annual cycle
Abstract Many exogenous factors may influence demographic rates (i.e., births, deaths, immigration, emigration), particularly for migratory birds that must cope with variable weather and habitat throughout their range and annual cycle. In midcontinental grasslands, disturbance (e.g., fire and grazing) and precipitation influence variation in grassland structure and function, but we know little about when and why precipitation is associated with grassland species' vital rates. We related estimates of detection, survival, and emigration toa priorisets of precipitation metrics to test the putative alternative factors influencing movement and mortality in grasshopper sparrows (Ammodramus savannarum). This species is a migratory songbird that exhibits exceptionally high rates of within‐season and between‐season dispersal. Between 2013 and 2020, we captured and resighted grasshopper sparrows in northeastern Kansas, USA, compiling capture histories for 1,332 adult males. We tested predictions of climatic hypotheses explaining variation in survival and emigration throughout a grasshopper sparrow's annual cycle; both survival and emigration were associated with the El Niño‐Southern Oscillation precipitation index (ESPI). Survival was positively related with ESPI during winter, and temporary emigration was curvilinearly related to breeding season ESPI lagged 2 years, with the highest site fidelity associated with intermediate rainfall values. The relationship between rainfall and temporary emigration likely reflects the influence of weather over multiple years on vegetation structure with consequent effects on local demography. This study provides compelling support for the idea that grassland species respond to high interannual variability by adopting dispersal strategies unlike those of many well‐studied migrant birds. Furthermore, the results imply that the consequences of increasing climatic extremes may not be immediately apparent, with demographic consequences lasting for at least a few years.
more »
« less
- PAR ID:
- 10400943
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- The Journal of Wildlife Management
- Volume:
- 87
- Issue:
- 3
- ISSN:
- 0022-541X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Grasshoppers are important animals in semi-arid environments, both as herbivores and as food resources for higher level consumer animals. Grasshoppers tend to be numerous and speciose in semi-arid environments, especially desert grasslands, where they range from environmental specialists to environmental generalists. Grasshopper populations tend to change considerably from year to year, often in response to annual variation in rainfall and plant production. The purpose of this study was to monitor grasshopper species composition and abundance over large temporal and spatial dimentions which include black grama grassland, blue grama grassland, creosotebush shrubland, and pinyon/juniper woodland environments at the Sevilleta, in relation to seasonal and annual variation in precipitation and plant production. Data were collected for all individual species to provide information on community dynamics as well as population dynamics, starting in 1992 and continuing to the present. The working research hypothesis for this study was that grasshopper populations in all environments will correlate positively to seasonal and annual variation in precipitation and plant production. Spring grasshopper populations will be especially high during El Nino years, and late summer populations especially high during La Nina years.more » « less
-
Abstract Identifying the specific environmental features and associated density‐dependent processes that limit population growth is central to both ecology and conservation. Comparative assessments of sympatric species allow for inference about how ecologically similar species differentially respond to their shared environment, which can be used to inform community‐level conservation strategies. Comparative assessments can nevertheless be complicated by interactions and feedback loops among the species in question. We developed an integrated population model based on 61 years of ecological data describing the demographic histories of Canvasbacks (Aythya valisineria) and Redheads (Aythya americana), two species of migratory diving ducks that utilize similar breeding habitats and affect each other's demography through interspecific nest parasitism. We combined this model with a transient life table response experiment to determine the extent that demographic rates, and their contributions to population growth, were similar between these two species. We found that demographic rates and, to a lesser extent, their contributions to population growth covaried between Canvasbacks and Redheads, but the trajectories of population abundances widely diverged between the two species during the end of the twentieth century due to inherent differences between the species life histories and sensitivities to both environmental variation and harvest pressure. We found that annual survival of both species increased during years of restrictive harvest regulations; however, recent harvest pressure on female Canvasbacks may be contributing to population declines. Despite periodic, and often dramatic, increases in breeding abundance during wet years, the number of breeding Canvasbacks declined by 13% whereas the number of breeding Redheads has increased by 37% since 1961. Reductions in harvest pressure and improvements in submerged aquatic vegetation throughout the wintering grounds have mediated the extent to which populations of both species contracted during dry years in the Prairie Pothole Region. However, continued degradation of breeding habitats through climate‐related shifts in wetland hydrology and agricultural conversion of surrounding grassland habitats may have exceeded the capacity for demographic compensation during the nonbreeding season.more » « less
-
Abstract Nonhuman primates are an essential part of tropical biodiversity and play key roles in many ecosystem functions, processes, and services. However, the impact of climate variability on nonhuman primates, whether anthropogenic or otherwise, remains poorly understood. In this study, we utilized age‐structured matrix population models to assess the population viability and demographic variability of a population of geladas (Theropithecus gelada) in the Simien Mountains, Ethiopia with the aim of revealing any underlying climatic influences. Using data from 2008 to 2019 we calculated annual, time‐averaged, and stochastic population growth rates (λ) and investigated relationships between vital rate variability and monthly cumulative rainfall and mean temperature. Our results showed that under the prevailing environmental conditions, the population will increase (λs = 1.021). Significant effects from rainfall and/or temperature variability were widely detected across vital rates; only the first year of infant survival and the individual years of juvenile survival were definitively unaffected. Generally, the higher temperature in the hot‐dry season led to lower survival and higher fecundity, while higher rainfall in the hot‐dry season led to increased survival and fecundity. Overall, these results provide evidence of greater effects of climate variability across a wider range of vital rates than those found in previous primate demography studies. This highlights that although primates have often shown substantial resilience to the direct effects of climate change, their vulnerability may vary with habitat type and across populations.more » « less
-
Climate change is shifting the phenology of migratory animals earlier; yet an understanding of how climate change leads to variable shifts across populations, species and communities remains hampered by limited spatial and taxonomic sampling. In this study, we used a hierarchical Bayesian model to analyse 88,965 site‐specific arrival dates from 222 bird species over 21 years to investigate the role of temperature, snowpack, precipitation, the El‐Niño/Southern Oscillation and the North Atlantic Oscillation on the spring arrival timing of Nearctic birds. Interannual variation in bird arrival on breeding grounds was most strongly explained by temperature and snowpack, and less strongly by precipitation and climate oscillations. Sensitivity of arrival timing to climatic variation exhibited spatial nonstationarity, being highly variable within and across species. A high degree of heterogeneity in phenological sensitivity suggests diverging responses to ongoing climatic changes at the population, species and community scale, with potentially negative demographic and ecological consequences.more » « less
An official website of the United States government
