We aim to determine the intrinsic far-Infrared (far-IR) emission of X-ray-luminous quasars over cosmic time. Using a 16 deg2 region of the Stripe 82 field surveyed by XMM-Newton and Herschel Space Observatory, we identify 2905 X-ray luminous (LX > 1042 erg/s) active galactic nuclei (AGN) in the range z ≈ 0–3. The IR is necessary to constrain host galaxy properties such as star formation rate (SFR) and gas mass. However, only 10 per cent of our AGN are detected both in the X-ray and IR. Because 90 per cent of the sample is undetected in the far-IR by Herschel, we explore the mean IR emission of these undetected sources by stacking their Herschel/SPIRE images in bins of X-ray luminosity and redshift. We create stacked spectral energy distributions from the optical to the far-IR, and estimate the median SFR, dust mass, stellar mass, and infrared luminosity using a fitting routine. We find that the stacked sources on average have similar SFR/Lbol ratios as IR detected sources. The majority of our sources fall on or above the main sequence line suggesting that X-ray selection alone does not predict the location of a galaxy on the main sequence. We also find that the gas depletion time scalesmore »
We test the merger-induced dual active galactic nuclei (dAGNs) paradigm using a sample of 35 radio galaxy pairs from the Sloan Digital Sky Survey Stripe 82 field. Using Keck optical spectroscopy, we confirm 21 pairs have consistent redshifts, constituting kinematic pairs; the remaining 14 pairs are line-of-sight projections. We classify the optical spectral signatures via emission line ratios, equivalent widths, and excess of radio power above star formation predicted outputs. We find six galaxies are classified as LINERs and seven are AGN/starburst composites. Most of the LINERs are retired galaxies, while the composites likely have AGN contribution. All of the kinematic pairs exhibit radio power more than 10× above the level expected from just star formation, suggestive of a radio AGN contribution. We also analyze high-resolution (0.″3) imaging at 6 GHz from the NSF’s Karl G. Jansky Very Large Array for 17 of the kinematic pairs. We find six pairs (two new, four previously known) host two separate radio cores, confirming their status as dAGNs. The remaining 11 pairs contain single AGNs, with most exhibiting prominent jets/lobes overlapping their companion. Our final census indicates a dAGN duty cycle slightly higher than predictions of purely stochastic fueling, although a larger more »
- Publication Date:
- NSF-PAR ID:
- 10400980
- Journal Name:
- The Astrophysical Journal
- Volume:
- 945
- Issue:
- 1
- Page Range or eLocation-ID:
- Article No. 73
- ISSN:
- 0004-637X
- Publisher:
- DOI PREFIX: 10.3847
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
ABSTRACT The kinematic disturbances associated with major galaxy mergers are known to produce gas inflows, which in turn may trigger accretion onto the supermassive black holes (SMBH) of the participant galaxies. While this effect has been studied in galaxy pairs, the frequency of active galactic nuclei (AGNs) in fully coalesced post-merger systems is poorly constrained due to the limited size or impurity of extant post-merger samples. Previously, we combined convolutional neural network (CNN) predictions with visual classifications to identify a highly pure sample of 699 post-mergers in deep r-band imaging. In the work presented here, we quantify the frequency of AGNs in this sample using three metrics: optical emission lines, mid-infrared (mid-IR) colour, and radio detection of low-excitation radio galaxies (LERGs). We also compare the frequency of AGNs in post-mergers to that in a sample of spectroscopically identified galaxy pairs. We find that AGNs identified by narrow-line optical emission and mid-IR colour have an increased incidence rate in post-mergers, with excesses of ~4 over mass- and redshift-matched controls. The optical and mid-IR AGN excesses in post-mergers exceed the values found for galaxy pairs, indicating that AGN activity in mergers peaks after coalescence. Conversely, we recover no significant excess of LERGsmore »
-
ABSTRACT Powerful outflows are thought to play a critical role in galaxy evolution and black hole growth. We present the first large-scale systematic study of ionized outflows in paired galaxies and post-mergers compared to a robust control sample of isolated galaxies. We isolate the impact of the merger environment to determine if outflow properties depend on merger stage. Our sample contains ∼4000 paired galaxies and ∼250 post-mergers in the local universe (0.02 ≤ z ≤ 0.2) from the Sloan Digital Sky Survey Data Release 7 (SDSS DR 7) matched in stellar mass, redshift, local density of galaxies, and [O iii] λ5007 luminosity to a control sample of isolated galaxies. By fitting the [O iii] λ5007 line, we find ionized outflows in ∼15 per cent of our entire sample. Outflows are much rarer in star-forming galaxies compared to active galactic nuclei (AGNs), and outflow incidence and velocity increase with [O iii] λ5007 luminosity. Outflow incidence is significantly elevated in the optical + mid-infrared selected AGN compared to purely optical AGN; over 60 per cent show outflows at the highest luminosities ($L_{\mathrm{[OIII]~\lambda 5007}}\, \gtrsim$ 1042 erg s−1), suggesting mid-infrared AGN selection favours galaxies with powerful outflows, at least for higher [O iii] λ5007 luminosities. However, we find no statistically significant difference in outflow incidence, velocity, and luminosity inmore »
-
ABSTRACT E+A galaxies are believed to be a short phase connecting major merger ultraluminous infrared galaxies (ULIRGs) with red and dead elliptical galaxies. Their optical spectrum suggests a massive starburst that was quenched abruptly, and their bulge-dominated morphologies with tidal tails suggest that they are merger remnants. Active galactic nucleus (AGN)-driven winds are believed to be one of the processes responsible for the sudden quenching of star formation and for the expulsion and/or destruction of the remaining molecular gas. Little is known about AGN-driven winds in this short-lived phase. In this paper, we present the first and unique sample of post-starburst galaxy candidates with AGNs that show indications of ionized outflows in their optical emission lines. Using Infrared Astronomical Satellite–far infrared (IRAS–FIR) observations, we study the star formation in these systems and find that many systems selected to have post-starburst signatures in their optical spectrum are in fact obscured starbursts. Using SDSS spectroscopy, we study the stationary and outflowing ionized gas. We also detect neutral gas outflows in 40 per cent of the sources with mass outflow rates 10–100 times more massive than in the ionized phase. The mean mass outflow rate and kinetic power of the ionized outflows in our sample ($\dot{M}\simmore »
-
ABSTRACT We present a combined radio/X-ray study of six massive galaxy clusters, aimed at determining the potential for heating of the intra-cluster medium (ICM) by non-central radio galaxies. Since X-ray cavities associated with the radio lobes of non-central galaxies are generally not detectable, we use Giant Metrewave Radio Telescope 610 MHz observations to identify jet sources and estimate their size, and Chandra data to estimate the pressure of the surrounding ICM. In the radio, we detect 4.5 per cent of galaxies above the spectroscopic survey limit (M$^{*}_{K}$ + 2.0) of the Arizona cluster redshift survey (ACReS) that covers five of our six clusters. Approximately one-tenth of these are extended radio sources. Using star formation (SF) rates determined from mid-infrared data, we estimate the expected contribution to radio luminosity from the stellar population of each galaxy, and find that most of the unresolved or poorly resolved radio sources are likely SF dominated. The relatively low frequency and good spatial resolution of our radio data allows us to trace SF emission down to galaxies of stellar mass ∼10 9.5 M⊙. We estimate the enthalpy of the (AGN-dominated) jet/lobe and tailed sources, and place limits on the energy available from unresolved radio jets. We find jet powers inmore »