skip to main content


Search for: All records

Award ID contains: 2103251

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We test the merger-induced dual active galactic nuclei (dAGNs) paradigm using a sample of 35 radio galaxy pairs from the Sloan Digital Sky Survey Stripe 82 field. Using Keck optical spectroscopy, we confirm 21 pairs have consistent redshifts, constituting kinematic pairs; the remaining 14 pairs are line-of-sight projections. We classify the optical spectral signatures via emission line ratios, equivalent widths, and excess of radio power above star formation predicted outputs. We find six galaxies are classified as LINERs and seven are AGN/starburst composites. Most of the LINERs are retired galaxies, while the composites likely have AGN contribution. All of the kinematic pairs exhibit radio power more than 10× above the level expected from just star formation, suggestive of a radio AGN contribution. We also analyze high-resolution (0.″3) imaging at 6 GHz from the NSF’s Karl G. Jansky Very Large Array for 17 of the kinematic pairs. We find six pairs (two new, four previously known) host two separate radio cores, confirming their status as dAGNs. The remaining 11 pairs contain single AGNs, with most exhibiting prominent jets/lobes overlapping their companion. Our final census indicates a dAGN duty cycle slightly higher than predictions of purely stochastic fueling, although a larger sample (potentially culled from VLASS) is needed to fully address the dAGN fraction. We conclude that while dAGNs in the Stripe 82 field are rare, the merger process plays some role in their triggering and it facilitates low to moderate levels of accretion.

     
    more » « less
  2. Abstract

    We provide a catalog of visually classified objects in the MaNGA integral field spectroscopic survey. The MaNGA survey is designed to target a single galaxy with each of its integral field units; however, many of these fields will host ancillary objects. We identify these discrete objects by cleaning up SDSS photometric objects in MaNGA’s fields-of-view. We then use the spectra from MaNGA’s data cubes to spectrally classify the identified objects. The catalog contains the positions and classifications of 1385 stars, 11,439 galaxies, and 107 broad-line active galactic nucleus (BLAGN) from the 10,130 unique MaNGA fields. We also provide spectroscopically derived parameters for the galaxies including; stellar masses, gas and stellar kinematics, and emission-line fluxes and equivalent widths. This catalog effectively expands the size of the MaNGA catalog by ∼50%, increasing the utility of the MaNGA project.

     
    more » « less
  3. Abstract

    We present a comparative study of active galactic nuclei (AGN) between galaxy pairs and isolated galaxies with the final data release of the MaNGA integral field spectroscopic survey. We build a sample of 391 kinematic galaxy pairs within the footprint of the survey and select AGN using the survey's spectra. We use the comoving volume densities of the AGN samples to quantify the effects that tidal interactions have on the triggering of nuclear accretion. Our hypothesis is that the pair sample contains AGN that are triggered by not only stochastic accretion but also tidally induced accretion and correlated accretion. With the level of stochastically triggered AGN fixed by the control sample, we model the strength of tidally induced accretion and correlated accretion as a function of projected separation (rp) and compare the model expectations with the observed volume densities of dual AGN and offset AGN (single AGN in a pair). Atrp∼ 10 kpc, we find that tidal interactions induce ∼30% more AGN than stochastic fueling and cause ∼12% of the offset AGN to become dual AGN because of correlations. The strength of both these effects decreases with increasingrp. We also find that the [Oiii] luminosities of the AGN in galaxy pairs are consistent with those found in isolated galaxies, likely because stochastically fed AGN dominate even among close pairs. Our results illustrate that while we can detect tidally induced effects statistically, it is challenging to separate tidally induced AGN and stochastically triggered AGN in interacting galaxies.

     
    more » « less
  4. Abstract

    Low luminosity active galactic nuclei (LLAGN) probe accretion physics in the low Eddington regime can provide additional clues about galaxy evolution. AGN variability is ubiquitous and thus provides a reliable tool for finding AGN. We analyze the All-Sky Automated Survey for SuperNovae light curves of 1218 galaxies withg< 14 mag and Sloan Digital Sky Survey spectra in search of AGN. We find 37 objects that are both variable and have AGN-like structure functions, which is about 3% of the sample. The majority of the variability selected AGN are LLAGN with Eddington ratios ranging from 10−4to 10−2. We thus estimate the fraction of LLAGN in the population of galaxies as 2% down to a median Eddington ratio of 2 × 10−3. Combining the BPT line ratio AGN diagnostics and the broad-line AGN, up to ∼60% of the AGN candidates are confirmed spectroscopically. The BPT diagnostics also classified 10%–30% of the candidates as star-forming galaxies rather than AGN.

     
    more » « less
  5. Abstract We compare the radial profiles of the specific star formation rate (sSFR) in a sample of 169 star-forming galaxies in close pairs with those of mass-matched control galaxies in the SDSS-IV MaNGA survey. We find that the sSFR is centrally enhanced (within one effective radius) in interacting galaxies by ∼0.3 dex and that there is a weak sSFR suppression in the outskirts of the galaxies of ∼0.1 dex. We stack the difference profiles for galaxies in five stellar-mass bins in the range log( M / M ⊙ ) = 9.0–11.5 and find that the sSFR enhancement has no dependence on the stellar mass. The same result is obtained when comparison galaxies are matched to each paired galaxy in both stellar mass and redshift. In addition, we find that the sSFR enhancement is elevated in pairs with nearly equal masses and closer projected separations, in agreement with previous work based on single-fiber spectroscopy. We also find that the sSFR offsets in the outskirts of the paired galaxies are dependent on whether the galaxy is the more-massive or less-massive companion in the pair. The more-massive companion experiences zero to a positive sSFR enhancement, while the less-massive companion experiences sSFR suppression in their outskirts. Our results illustrate the complex tidal effects on star formation in closely paired galaxies. 
    more » « less