skip to main content


Title: Rapid introgression of non‐native alleles following hybridization between a native Anolis lizard species and a cryptic invader across an urban landscape
Abstract

Invasive species can impact native populations through competition, predation, habitat alteration, and disease transmission, but also genetically through hybridization. Potential outcomes of hybridization span the continuum from extinction to hybrid speciation and can be further complicated by anthropogenic habitat disturbance. Hybridization between the native green anole lizard (Anolis carolinensis) and a morphologically similar invader (A. porcatus) in south Florida provides an ideal opportunity to study interspecific admixture across a heterogeneous landscape. We used reduced‐representation sequencing to describe introgression in this hybrid system and to test for a relationship between urbanization and non‐native ancestry. Our findings indicate that hybridization between green anole lineages was probably a limited, historic event, producing a hybrid population characterized by a diverse continuum of ancestry proportions. Genomic cline analyses revealed rapid introgression and disproportionate representation of non‐native alleles at many loci and no evidence for reproductive isolation between parental species. Three loci were associated with urban habitat characteristics; urbanization and non‐native ancestry were positively correlated, although this relationship did not remain significant when accounting for spatial nonindependence. Ultimately, our study demonstrates the persistence of non‐native genetic material even in the absence of ongoing immigration, indicating that selection favouring non‐native alleles can override the demographic limitation of low propagule pressure. We also note that not all outcomes of admixture between native and non‐native species should be considered intrinsically negative. Hybridization with ecologically robust invaders can lead to adaptive introgression, which may facilitate the long‐term survival of native populations otherwise unable to adapt to anthropogenically mediated global change.

 
more » « less
Award ID(s):
1655221
NSF-PAR ID:
10401003
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
32
Issue:
11
ISSN:
0962-1083
Page Range / eLocation ID:
p. 2930-2944
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Incompletely isolated species provide an opportunity to investigate the genetic mechanisms and evolutionary forces that maintain distinct species in the face of ongoing gene flow. Here, we use field surveys and reduced representation sequencing to characterize the patterns of reproductive isolation, admixture and genomic divergence between populations of the outcrossing wildflowerMimulus guttatusand selfingM. nasutus. Focusing on a single site where these two species have come into secondary contact, we find that phenological isolation is strong, although incomplete, and is likely driven by divergence in response to photoperiod. In contrast to previous field studies, which have suggested that F1‐hybrid formation might be rare, we discover patterns of genomic variation consistent with ongoing introgression. Strikingly, admixed individuals vary continuously from highly admixed to nearly pureM. guttatus, demonstrating ongoing hybridization and asymmetric introgression fromM. nasutusintoM. guttatus. Patterns of admixture and divergence across the genome show that levels of introgression are more variable than expected by chance. Some genomic regions show a reduced introgression, including one region that overlaps a critical photoperiodQTL, whereas other regions show elevated levels of interspecific gene flow. In addition, we observe a genome‐wide negative relationship between absolute divergence and the local recombination rate, potentially indicating natural selection againstM. nasutusancestry inM. guttatusgenetic backgrounds. Together, our results suggest thatMimulusspeciation is both ongoing and dynamic and that a combination of divergence in phenology and mating system, as well as selection against interspecific alleles, likely maintains these sympatric species.

     
    more » « less
  2. Abstract

    Hybridization facilitates recombination between divergent genetic lineages and can be shaped by both neutral and selective processes. Upon hybridization, loci with no net fitness effects introgress randomly from parental species into the genomes of hybrid individuals. Conversely, alleles from one parental species at some loci may provide a selective advantage to hybrids, resulting in patterns of introgression that do not conform to random expectations. We investigated genomic patterns of differential introgression in natural hybrids of two species of Caribbean anoles,Anolis pulchellusandA. krugiin Puerto Rico. Hybrids exhibitA. pulchellusphenotypes but possessA. krugimitochondrial DNA, originated from multiple, independent hybridization events, and appear to have replaced pureA. pulchellusacross a large area in western Puerto Rico. Combining genome‐wide SNP datasets with bioinformatic methods to identify signals of differential introgression in hybrids, we demonstrate that the genomes of hybrids are dominated bypulchellus‐derived alleles and show only 10%–20%A. krugiancestry. The majority ofA. krugiloci in hybrids exhibit a signal of non‐random differential introgression and include loci linked to genes involved in development and immune function. Three of these genes (delta like canonical notch ligand 1, jagged1 and notch receptor 1) affect cell differentiation and growth and interact with mitochondrial function. Our results suggest that differential non‐random introgression for a subset of loci may be driven by selection favouring the inheritance of compatible mitochondrial and nuclear‐encoded genes in hybrids.

     
    more » « less
  3. Abstract

    As humans cause the redistribution of species ranges, hybridization between previously allopatric species is on the rise. Such hybridization can have complex effects on overall fitness of native species as new allelic combinations are tested. Widespread species introductions provide a unique opportunity to study selection on introgressed alleles in independent, replicated populations. We examined selection on alleles that repeatedly introgressed from introduced rainbow trout (Oncorhynchus mykiss) into native westslope cutthroat trout (Oncorhynchus clarkii lewisi) populations in western Canada. We found that the degree of introgression of individual single nucleotide polymorphisms from the invasive species into the native is correlated between independent watersheds. A number of rainbow trout alleles have repeatedly swept to high frequency in native populations, suggesting parallel adaptive advantages. Using simulations, we estimated large selection coefficients up to 0.05 favoring several rainbow trout alleles in the native background. Although previous studies have found reduced hybrid fitness and genome‐wide resistance to introgression in westslope cutthroat trout, our results suggest that some introduced genomic regions are strongly favored by selection. Our study demonstrates the utility of replicated introductions as case studies for understanding parallel adaptation and the interactions between selection and introgression across the genome. We suggest that understanding this variation, including consideration of beneficial alleles, can inform management strategies for hybridizing species.

     
    more » « less
  4. Hybridization is among the evolutionary mechanisms most frequently hypothesized to drive the success of invasive species, in part because hybrids are common in invasive populations. One explanation for this pattern is that biological invasions coincide with a change in selection pressures that limit hybridization in the native range. To investigate this possibility, we studied the introduction of the brown anole (Anolis sagrei) in the southeastern United States. We find that native populations are highly genetically structured. In contrast, all invasive populations show evidence of hybridization among native-range lineages. Temporal sampling in the invasive range spanning 15 y showed that invasive genetic structure has stabilized, indicating that large-scale contemporary gene flow is limited among invasive populations and that hybrid ancestry is maintained. Additionally, our results are consistent with hybrid persistence in invasive populations resulting from changes in natural selection that occurred during invasion. Specifically, we identify a large-effect X chromosome locus associated with variation in limb length, a well-known adaptive trait in anoles, and show that this locus is often under selection in the native range, but rarely so in the invasive range. Moreover, we find that the effect size of alleles at this locus on limb length is much reduced in hybrids among divergent lineages, consistent with epistatic interactions. Thus, in the native range, epistasis manifested in hybrids can strengthen extrinsic postmating isolation. Together, our findings show how a change in natural selection can contribute to an increase in hybridization in invasive populations.

     
    more » « less
  5. Abstract

    When organisms experience secondary contact after allopatric divergence, genomic regions can introgress differentially depending on their relationships with adaptation, reproductive isolation, recombination, and drift. Analyses of genome‐wide patterns of divergence and introgression could provide insight into the outcomes of hybridization and the potential relationship between allopatric divergence and reproductive isolation. Here, we generate population genetic data (26,262 SNPs; 353 individuals) using a reduced‐representation sequencing approach to quantify patterns of ancestry, differentiation, and introgression between a pair of ecologically distinct mammals—the desert woodrat (N.lepida) and Bryant's woodrat (N.bryanti)—that hybridize at a sharp ecotone in southern California. Individual ancestry estimates confirmed that hybrids were rare in this bimodal hybrid zone, and entirely consisted of a few F1individuals and a broad range of multigenerational backcrosses. Genomic cline analyses indicated more than half of loci had elevated introgression from one genomic background into the other. However, introgression was not associated with relative or absolute measures of divergence, and loci with extreme values for both were not typically found near detoxification enzymes previously implicated in dietary specialization for woodrats. The decoupling of differentiation and introgression suggests that processes other than adaptation, such as drift, may underlie the extreme clines at this contact zone.

     
    more » « less