skip to main content

This content will become publicly available on December 1, 2023

Title: In situ analysis of the bulk and surface chemical compositions of organic aerosol particles
Abstract Understanding the chemical and physical properties of particles is an important scientific, engineering, and medical issue that is crucial to air quality, human health, and environmental chemistry. Of special interest are aerosol particles floating in the air for both indoor virus transmission and outdoor atmospheric chemistry. The growth of bio- and organic-aerosol particles in the air is intimately correlated with chemical structures and their reactions in the gas phase at aerosol particle surfaces and in-particle phases. However, direct measurements of chemical structures at aerosol particle surfaces in the air are lacking. Here we demonstrate in situ surface-specific vibrational sum frequency scattering (VSFS) to directly identify chemical structures of molecules at aerosol particle surfaces. Furthermore, our setup allows us to simultaneously probe hyper-Raman scattering (HRS) spectra in the particle phase. We examined polarized VSFS spectra of propionic acid at aerosol particle surfaces and in particle bulk. More importantly, the surface adsorption free energy of propionic acid onto aerosol particles was found to be less negative than that at the air/water interface. These results challenge the long-standing hypothesis that molecular behaviors at the air/water interface are the same as those at aerosol particle surfaces. Our approach opens a new avenue in more » revealing surface compositions and chemical aging in the formation of secondary organic aerosols in the atmosphere as well as chemical analysis of indoor and outdoor viral aerosol particles. « less
Authors:
; ; ; ; ; ; ;
Award ID(s):
2045084
Publication Date:
NSF-PAR ID:
10401245
Journal Name:
Communications Chemistry
Volume:
5
Issue:
1
ISSN:
2399-3669
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. This study presents a characterization of the hygroscopic growth behaviour and effects of different inorganic seed particles on the formation of secondary organic aerosols (SOAs) from the dark ozone-initiated oxidation of isoprene at low NOx conditions. We performed simulations of isoprene oxidation using a gas-phase chemical reaction mechanism based onthe Master Chemical Mechanism (MCM) in combination with an equilibriumgas–particle partitioning model to predict the SOA concentration. Theequilibrium model accounts for non-ideal mixing in liquid phases, includingliquid–liquid phase separation (LLPS), and is based on the AIOMFAC (Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficients) model for mixture non-ideality and the EVAPORATION (Estimation of VApour Pressure of ORganics, Accounting for Temperature,Intramolecular, and Non-additivity effects) model for pure compound vapourpressures. Measurements from the Cosmics Leaving Outdoor Droplets (CLOUD)chamber experiments, conducted at the European Organization for NuclearResearch (CERN) for isoprene ozonolysis cases, were used to aid inparameterizing the SOA yields at different atmospherically relevanttemperatures, relative humidity (RH), and reacted isoprene concentrations. To represent the isoprene-ozonolysis-derived SOA, a selection of organicsurrogate species is introduced in the coupled modelling system. The modelpredicts a single, homogeneously mixed particle phase at all relativehumidity levels for SOA formation in the absence of any inorganic seedparticles. In the presence ofmore »aqueous sulfuric acid or ammonium bisulfateseed particles, the model predicts LLPS to occur below ∼ 80 % RH, where the particles consist of an inorganic-rich liquid phase andan organic-rich liquid phase; however, this includes significant amounts of bisulfate and water partitioned to the organic-rich phase. The measurements show an enhancement in the SOA amounts at 85 % RH, compared to 35 % RH, for both the seed-free and seeded cases. The model predictions of RH-dependent SOA yield enhancements at 85 % RH vs. 35 % RH are 1.80 for a seed-free case, 1.52 for the case with ammonium bisulfate seed, and 1.06 for the case with sulfuric acid seed. Predicted SOA yields are enhanced in the presence of an aqueous inorganic seed, regardless of the seed type (ammonium sulfate, ammonium bisulfate, or sulfuric acid) in comparison with seed-free conditions at the same RH level. We discuss the comparison of model-predicted SOA yields with a selection of other laboratory studies on isoprene SOA formation conducted at different temperatures and for a variety of reacted isoprene concentrations. Those studies were conducted at RH levels at or below 40 % with reported SOA mass yields ranging from 0.3 % up to 9.0 %, indicating considerable variations. A robust feature of our associated gas–particle partitioning calculations covering the whole RH range is the predicted enhancement of SOA yield at high RH (> 80 %) compared to low RH (dry) conditions, which is explained by the effect of particle water uptake and its impact on the equilibrium partitioning of all components.« less
  2. Abstract Number: 530 Working Group: Aerosol Chemistry Abstract Isoprene is the most abundant non-methane volatile organic compound (VOC) emitted globally. Isomeric isoprene hydroxy hydroperoxides (ISOPOOH), key photooxidation products of isoprene, likely comprise the second most abundant class of peroxides in the atmosphere, following hydrogen peroxide. Studies have shown that hydrogen peroxide plays important roles in the formation of inorganic sulfates in cloud water mimics. However, the potential for ISOPOOH to play a role in sulfate formation in wet aerosol oxidation from reduced sulfur species (such as inorganic sulfite) is not well understood. This study systematically investigates the reaction kinetics and products of ISOPOOH reacting with particle phase inorganic sulfite and discusses implications to the sulfate aerosol budget. In order to examine the reaction kinetics of ISOPOOH with aqueous sulfite, ammonium bisulfite particles were injected into the UNC indoor environmental chamber under dark conditions with 70% RH. After the inorganic sulfite concentrations stabilized, selected concentrations of gas-phase 1,2-ISOPOOH was injected into the chamber to initiate the multiphase reaction. The gas-phase ISOPOOH and particle-phase species were sampled with online instruments, including a chemical ionization mass spectrometer (CIMS), an aerosol chemical speciation monitor (ACSM), and a particle-into-liquid sampler (PILS), and also collected bymore »Teflon filters for offline molecular-level analyses by an ultra-performance liquid chromatography coupled to an electrospray ionization high resolution quadrupole time-of-flight mass spectrometry (UPLC-ESI-HR-QTOFMS). Results show that a significant amount of inorganic sulfite was converted to inorganic sulfate and organosulfates in the particle phase at relatively fast reaction rates, altering the chemical and physical properties of the particles including phase state, pH, reactivity, and composition. Given the high abundance and water solubility of ISOPOOH in the ambient environment, the multiphase reactions examined in our study indicate significant impacts of ISOPOOH on the atmospheric lifecycle of sulfur and the physicochemical properties of ambient particles. Access: https://aaarabstracts.com/2020/viewabstract.php?pid=530« less
  3. Atmospheric aerosol particles with a high viscosity may become inhomogeneously mixed during chemical processing. Models have predicted gradients in condensed phase reactant concentration throughout particles as the result of diffusion and chemical reaction limitations, termed chemical gradients. However, these have never been directly observed for atmospherically relevant particle diameters. We investigated the reaction between ozone and aerosol particles composed of xanthan gum and FeCl 2 and observed the in situ chemical reaction that oxidized Fe 2+ to Fe 3+ using X-ray spectromicroscopy. Iron oxidation state of particles as small as 0.2 μm in diameter were imaged over time with a spatial resolution of tens of nanometers. We found that the loss off Fe 2+ accelerated with increasing ozone concentration and relative humidity, RH. Concentric 2-D column integrated profiles of the Fe 2+ fraction, α , out of the total iron were derived and demonstrated that particle surfaces became oxidized while particle cores remained unreacted at RH = 0–20%. At higher RH, chemical gradients evolved over time, extended deeper from the particle surface, and Fe 2+ became more homogeneously distributed. We used the kinetic multi-layer model for aerosol surface and bulk chemistry (KM-SUB) to simulate ozone reaction constrained with our observationsmore »and inferred key parameters as a function of RH including Henry's Law constant for ozone, H O3 , and diffusion coefficients for ozone and iron, D O3 and D Fe , respectively. We found that H O3 is higher in our xanthan gum/FeCl 2 particles than for water and increases when RH decreased from about 80% to dry conditions. This coincided with a decrease in both D O3 and D Fe . In order to reproduce observed chemical gradients, our model predicted that ozone could not be present further than a few nanometers from a particle surface indicating near surface reactions were driving changes in iron oxidation state. However, the observed chemical gradients in α observed over hundreds of nanometers must have been the result of iron transport from the particle interior to the surface where ozone oxidation occurred. In the context of our results, we examine the applicability of the reacto-diffusive framework and discuss diffusion limitations for other reactive gas-aerosol systems of atmospheric importance.« less
  4. Benzo[a]pyrene (BaP), a key polycyclic aromatic hydrocarbon (PAH) often associated with soot particles coated by organic compounds, is a known carcinogen and mutagen. When mixed with organics, the kinetics and mechanisms of chemical transformations of BaP by ozone in indoor and outdoor environments are still not fully elucidated. Using direct analysis in real-time mass spectrometry (DART-MS), kinetics studies of the ozonolysis of BaP in thin films exhibited fast initial loss of BaP followed by a slower decay at long exposure times. Kinetic multilayer modeling demonstrates that the slow decay of BaP over long times can be simulated if there is slow diffusion of BaP from the film interior to the surface, resolving long-standing unresolved observations of incomplete PAH decay upon prolonged ozone exposure. Phase separation drives the slow diffusion time scales in multicomponent systems. Specifically, thermodynamic modeling predicts that BaP phase separates from secondary organic aerosol material so that the BaP-rich layer at the surface shields the inner BaP from ozone. Also, BaP is miscible with organic oils such as squalane, linoleic acid, and cooking oil, but its oxidation products are virtually immiscible, resulting in the formation of a viscous surface crust that hinders diffusion of BaP from the filmmore »interior to the surface. These findings imply that phase separation and slow diffusion significantly prolong the chemical lifetime of PAHs, affecting long-range transport of PAHs in the atmosphere and their fates in indoor environments.« less
  5. Abstract. Mass accommodation is an essential process for gas–particle partitioning oforganic compounds in secondary organic aerosols (SOA). The massaccommodation coefficient is commonly described as the probability of a gasmolecule colliding with the surface to enter the particle phase. It is oftenapplied, however, without specifying if and how deep a molecule has topenetrate beneath the surface to be regarded as being incorporated into thecondensed phase (adsorption vs. absorption). While this aspect is usuallynot critical for liquid particles with rapid surface–bulk exchange, it canbe important for viscous semi-solid or glassy solid particles to distinguishand resolve the kinetics of accommodation at the surface, transfer acrossthe gas–particle interface, and further transport into the particle bulk. For this purpose, we introduce a novel parameter: an effective massaccommodation coefficient αeff that depends on penetrationdepth and is a function of surface accommodation coefficient, volatility,bulk diffusivity, and particle-phase reaction rate coefficient. Applicationof αeff in the traditional Fuchs–Sutugin approximation ofmass-transport kinetics at the gas–particle interface yields SOApartitioning results that are consistent with a detailed kinetic multilayermodel (kinetic multilayer model of gas–particle interactions in aerosols and clouds, KM-GAP; Shiraiwa et al., 2012) and two-film model solutions (Modelfor Simulating Aerosol Interactions and Chemistry, MOSAIC;Zaveri et al., 2014) but deviate substantially frommore »earlier modelingapproaches not considering the influence of penetration depth and relatedparameters. For highly viscous or semi-solid particles, we show that the effective massaccommodation coefficient remains similar to the surface accommodationcoefficient in the case of low-volatility compounds, whereas it can decrease byseveral orders of magnitude in the case of semi-volatile compounds. Such effectscan explain apparent inconsistencies between earlier studies deriving massaccommodation coefficients from experimental data or from molecular dynamicssimulations. Our findings challenge the approach of traditional SOA models using theFuchs–Sutugin approximation of mass transfer kinetics with a fixed massaccommodation coefficient, regardless of particle phase state and penetrationdepth. The effective mass accommodation coefficient introduced in this studyprovides an efficient new way of accounting for the influence of volatility,diffusivity, and particle-phase reactions on SOA partitioning in processmodels as well as in regional and global air quality models. While kineticlimitations may not be critical for partitioning into liquid SOA particlesin the planetary boundary layer (PBL), the effects are likely important foramorphous semi-solid or glassy SOA in the free and upper troposphere (FT–UT)as well as in the PBL at low relative humidity and low temperature.« less