skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Low power optical bistability from quantum dots in a nanobeam photonic crystal cavity
We demonstrate a low power thermally induced optical bistability at telecom wavelengths and room temperature using a nanobeam photonic crystal cavity embedded with an ensemble of quantum dots. The nanobeam photonic crystal cavity is transfer-printed onto the edge of a carrier chip for thermal isolation of the cavity with an efficient optical coupling between the nanobeam waveguide and optical setup. Reflectivity measurements performed with a tunable laser reveal the thermo-optic nature of the nonlinearity. A bistability power threshold as low as 23  μW and an on/off response contrast of 6.02 dB are achieved from a cavity with a moderately low quality factor of 2830. Our device provides optical bistability at power levels an order of magnitude lower than previous quantum-dot-based devices.  more » « less
Award ID(s):
1933546
PAR ID:
10401246
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Applied Physics Letters
Volume:
121
Issue:
8
ISSN:
0003-6951
Page Range / eLocation ID:
081104
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We demonstrate a high Q, compact photonic crystal nanobeam cavity in the new 45nm GlobalFoundries 45CLO monolithic electronics-photonics platform optimized for silicon photonics – with an intrinsic Q of 134,000, FSR of 24.17 nm, and a theoretical Q/V of 2.2E-5 (λ/n)^(-3). 
    more » « less
  2. The realization of an efficient quantum optical interface for multi-qubit systems is an outstanding challenge in science and engineering. Using two atoms in individually controlled optical tweezers coupled to a nanofabricated photonic crystal cavity, we demonstrate entanglement generation, fast nondestructive readout, and full quantum control of atomic qubits. The entangled state is verified in free space after being transported away from the cavity by encoding the qubits into long-lived states and using dynamical decoupling. Our approach bridges quantum operations at an optical link and in free space with a coherent one-way transport, potentially enabling an integrated optical interface for atomic quantum processors. 
    more » « less
  3. We demonstrate higher sensitivity detection of proteins in a photonic crystal platform by including a deep subwavelength feature in the unit cell that locally increases the energy density of light. Through both simulations and experiments, the sensing capability of a deep subwavelength-engineered silicon antislot photonic crystal nanobeam (PhCNB) cavity is compared to that of a traditional PhCNB cavity. The redistribution and local enhancement of the energy density by the 50 nm antislot enables stronger light-molecule interaction at the surface of the antislot and leads to a larger resonance shift upon protein binding. This surface-based energy enhancement is confirmed by experiments demonstrating a nearly 50% larger resonance shift upon attachment of streptavidin molecules to biotin-functionalized antislot PhCNB cavities. 
    more » « less
  4. Abstract Deterministic positioning single site-controlled high symmetric InGaAs quantum dots (QDs) in (111)B-oriented GaAs photonic crystal cavities with nanometer-scale accuracy provides an idea component for building integrated quantum photonic circuits. However, it has been a long-standing challenge of improving cavity Q -factors in such systems. Here, by optimizing the trade-off between the cavity loss and QD spectral quality, we demonstrate our site-controlled QD-nanocavity system operating in the intermediate coupling regime mediated by phonon scattering, with the dynamic coexistence of strong and weak coupling. The cavity-exciton detuning-dependent micro-photoluminescence spectrum reveals concurrence of a trend of exciton-polariton mode avoided crossing, as a signature of Rabi doublet of the strongly coupled system. Meanwhile, a trend of keeping constant or slight blue shift of coupled exciton–cavity mode(CM) energy across zero-detuning is ascribed to the formation of collective states mediated by phonon-assisted coupling, and their rare partial out-of-synchronization linewidth-narrowing is linked to their coexisting strong-weak coupling regime. We further reveal the pump power-dependent anti-bunching photon statistical dynamics of this coexisting strong-weak coupled system and the optical features of strongly confined exciton-polaritons, and dark-exciton-like states. These observations demonstrate the potential capabilities of site-controlled QD-cavity systems as deterministic quantum nodes for on-chip quantum information processing and provide guidelines for future device optimization for achieving the strong coupling regime. 
    more » « less
  5. Abstract Silicon carbide is evolving as a prominent solid-state platform for the realization of quantum information processing hardware. Angle-etched nanodevices are emerging as a solution to photonic integration in bulk substrates where color centers are best defined. We model triangular cross-section waveguides and photonic crystal cavities using Finite-Difference Time-Domain and Finite-Difference Eigensolver approaches. We analyze optimal color center positioning within the modes of these devices and provide estimates on achievable Purcell enhancement in nanocavities with applications in quantum communications. Using open quantum system modeling, we explore emitter-cavity interactions of multiple non-identical color centers coupled to both a single cavity and a photonic crystal molecule in SiC. We observe polariton and subradiant state formation in the cavity-protected regime of cavity quantum electrodynamics applicable in quantum simulation. 
    more » « less