- Award ID(s):
- 1650474
- PAR ID:
- 10401290
- Date Published:
- Journal Name:
- Identical Twins Face Morph Database Generation
- Page Range / eLocation ID:
- 1 to 9
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Morph images threaten Facial Recognition Systems (FRS) by presenting as multiple individuals, allowing an adversary to swap identities with another subject. Morph generation using generative adversarial networks (GANs) results in high-quality morphs unaffected by the spatial artifacts caused by landmark-based methods, but there is an apparent loss in identity with standard GAN-based morphing methods. In this paper, we propose a novel StyleGAN morph generation technique by introducing a landmark enforcement method to resolve this issue. Considering this method, we aim to enforce the landmarks of the morphed image to represent the spatial average of the landmarks of the bona fide faces and subsequently the morph images to inherit the geometric identity of both bona fide faces. Exploration of the latent space of our model is conducted using Principal Component Analysis (PCA) to accentuate the effect of both the bona fide faces on the morphed latent representation and address the identity loss issue with latent domain averaging. Additionally, to improve high frequency reconstruction in the morphs, we study the train-ability of the noise input for the StyleGAN2 model.more » « less
-
A morph is an image of an ambiguous subject generated by combining multiple individuals. The morphed image can be submitted to a facial recognition system and erroneously verified with the contributing bad actors. When submitted as a passport image, a morphed face poses a national security threat because a passport can then be shared between the individuals. As morphed images become easier to generate, it is vital that the research community expands available datasets in order to contentiously improve current technology. Children are a challenging paradigm for facial recognition systems and morphing children takes advantage of this disparity. In this paper, we morph juvenile faces in order to create a unique, high-quality dataset to challenge FRS. To the best of our knowledge, this is the first study on the generation and evaluation of juvenile morphed faces. The evaluation of the generated morphed juvenile dataset is performed in terms of vulnerability analysis and presentation attack error rates.more » « less
-
The rise of the multiracial population has been met with a growing body of research examining multiracial face perception. A common method for creating multiracial face stimuli in past research has been mathematically averaging two monoracial “parent” faces of different races to create computer-generated multiracial morphs, but conclusions from research using morphs will only be accurate to the extent that morphs yield perceptual decisions similar to those that would be made with real multiracial faces. The current studies compared race classifications of real and morphed multiracial face stimuli. We found that oval-masked morphed faces were classified as multiracial significantly more often than oval-masked real multiracial faces (Studies 1 and 2), but at comparable levels to unmasked real multiracial faces (Study 2). Study 3 examined factors that could explain differences in how morphs and real multiracial faces are categorized and pointed to the potential role that unusualness/distinctiveness might play.
-
Abstract Populations often contain discrete classes or morphs (e.g., sexual dimorphisms, wing dimorphisms, trophic dimorphisms) characterized by distinct patterns of trait expression. In quantitative genetic analyses, the different morphs can be considered as different environments within which traits are expressed. Genetic variances and covariances can then be estimated independently for each morph or in a combined analysis. In the latter case, morphs can be considered as separate environments in a bivariate analysis or entered as fixed effects in a univariate analysis. Although a common approach, we demonstrate that the latter produces downwardly biased estimates of additive genetic variance and heritability unless the quantitative genetic architecture of the traits concerned is perfectly correlated between the morphs. This result is derived for four widely used quantitative genetic variance partitioning methods. Given that theory predicts the evolution of genotype‐by‐environment (morph) interactions as a consequence of selection favoring different trait combinations in each morph, we argue that perfect correlations between the genetic architectures of the different morphs are unlikely. A sampling of the recent literature indicates that the majority of researchers studying traits expressed in different morphs recognize this and do estimate morph‐specific quantitative genetic architecture. However, ca. 16% of the studies in our sample utilized only univariate, fixed‐effects models. We caution against this approach and recommend that it be used only if supported by evidence that the genetic architectures of the different morphs do not differ.
-
Abstract Variation in color morph behavior is an important factor in the maintenance of color polymorphism. Alternative anti-predator behaviors are often associated with morphological traits such as coloration, possibly because predator-mediated viability selection favors certain combinations of anti-predator behavior and color. The Aegean wall lizard,
Podarcis erhardii , is color polymorphic and populations can have up to three monochromatic morphs: orange, yellow, and white. We investigated whether escape behaviors differ among coexisting color morphs, and if morph behaviors are repeatable across different populations with the same predator species. Specifically, we assessed color morph flight initiation distance (FID), distance to the nearest refuge (DNR), and distance to chosen refuge (DR) in two populations of Aegean wall lizards from Naxos island. We also analyzed the type of refugia color morphs selected and their re-emergence behavior following a standardized approach. We found that orange morphs have different escape behaviors from white and yellow morphs, and these differences are consistent in both populations we sampled. Orange morphs have shorter FIDs, DNRs, and DRs; select different refuge types; and re-emerge less often after being approached compared to white and yellow morphs. Observed differences in color morph escape behaviors support the idea that morphs have evolved alternative behavioral strategies that may play a role in population-level morph maintenance and loss.Significance statement Color polymorphic species often differ in behaviors related to reproduction, but differences in other behaviors are relatively underexplored. In this study, we use an experimental approach in two natural populations of color populations of color polymorphic lizards to determine that color morphs have diverged in their escape behaviors. By conducting our experiments in two different populations with similar predator regimes, we show for the first time that behavioral differences among intra-specific color morphs are repeatable across populations, suggesting that alternative behavioral strategies have evolved in this species. Using this experimental approach, we demonstrate that the brightest orange morph stays closer to refuge than other morphs, uses a different refuge type (vegetation) more often than other morphs (wall crevices), and take much longer to emerge from refuge after a simulated predation event than other morphs. Thus, selective pressures from visual predators may differ between morphs and play a role in the evolution and maintenance of color polymorphisms in these types of systems. Our study species,
Podarcis erhardii , belongs to a highly color polymorphic genus (19/23 spp. are color polymorphic) that contains the same three color morphs, thus we believe our results may be relevant to more than justP .erhardii .