Climatic, ecophysiological, and phenological controls on plant ecohydrological strategies in seasonally dry ecosystems: ECOHYDROLOGY OF SEASONALLY DRY ECOSYSTEMS
                        
                    - Award ID(s):
- 1331940
- PAR ID:
- 10401565
- Date Published:
- Journal Name:
- Ecohydrology
- Volume:
- 8
- Issue:
- 4
- ISSN:
- 1936-0584
- Page Range / eLocation ID:
- 660 to 681
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            Tropical forests cover 7% of the earth's surface and hold 50% of known terrestrial arthropod species. Alarming insect declines resulting from human activities have recently been documented in temperate and tropical ecosystems worldwide, but reliable data from tropical forests remain sparse. The sap-sucking tribe Athysanini is one herbivore group sensitive to anthropogenic perturbation and the largest within the diverse insect family Cicadellidae distributed in America's tropical forests. To measure the possible effects of deforestation and related activities on leafhopper biodiversity, a survey of 143 historic collecting localities was conducted to determine whether species documented in the Mexican dry tropical forests during the 1920s to 1940s were still present. Biostatistical diversity analysis was performed to compare historical to recent data on species occurrences. A data matrix of 577 geographical records was analysed. In total, 374 Athysanini data records were included representing 115 species of 41 genera. Historically, species richness and diversity were higher than found in the recent survey, despite greater collecting effort in the latter. A strong trend in species decline was observed (−53%) over 75 years in this endangered seasonally dry ecosystem. Species completeness was dissimilar between historic and present data. Endemic taxa were significantly less important and represented in the 1920s–1940s species records. All localities surveyed in the dry tropical forest are disturbed and reduced by modern anthropogenic processes. Mexico harbours highly endemic leafhopper taxa with a large proportion of these inhabiting the dry forest. These findings provide important data for conservation decision making and modelling of distribution patterns of this threatened seasonally dry tropical ecosystem.more » « less
- 
            Abstract In seasonally dry ecosystems, which are common in sub‐Saharan Africa, precipitation after dry periods can cause large pulses of nitrous oxide (N2O), a greenhouse gas, and of nitric oxide (NO), a precursor to tropospheric ozone pollution. Agricultural practices can change soil characteristics, affecting trace N gas emissions. To evaluate the effects of land use on trace gas pulses at the start of the rainy season, we conducted laboratory measurements of N2O and NO fluxes from soils collected from four pairs of agricultural and natural savannah sites across the Sudano‐Sahelian zone. We also conducted in situ wetting experiments, measuring NO fluxes from fallow sandy soils in Tanzania and NO and N2O fluxes from clayey soils in Kenya with different histories of fertilizer use. In incubation studies, NO increased by a factor of 7 to 25 following wetting, and N2O fluxes shifted from negative to positive; cumulative NO fluxes were an order of magnitude larger than cumulative N2O fluxes. In Kenya and Tanzania, NO increased by 1 to 2 orders of magnitude after wetting, and N2O increased by a factor of roughly 5 to 10. Cumulative NO fluxes ranged from 87 to 115 g NO‐N ha−1across both countries—a substantial proportion of annual emissions—compared to roughly 1 g N2O‐N in Kenya. There were no effects of land use or fertilization history on the magnitude of NO or N2O pulses, though land use may have been confounded with differences in soil texture potentially limiting the ability to detect land use effects.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    