Abstract Solute transit or travel time distributions (TTDs) in catchments are relevant to both hydrochemical response and inference of hydrologic mechanisms. Long‐tailed TTDs and fractal scaling behavior of stream concentration power spectra (∼1/frequency, or 1/frequency to a power <2) are widely observed in catchment studies. In several catchments, a significant fraction of streamflow is derived from groundwater in shallow fractured bedrock, where matrix diffusion significantly influences solute transport. I present frequency and time domain theoretical analyses of solute transport to quantify the influence of matrix diffusion on fractal scaling and long‐tailed TTDs. The theoretical concentration power spectra exhibit fractal scaling, and the corresponding TTDs resemble a gamma distribution. The tails of the TTDs are influenced by accessible matrix width, exhibiting a sustained power‐law (rather than exponential) decline for large matrix widths. Application to an experimental catchment shows that theoretical spectra match previously reported power spectral estimates derived from concentration measurements.
more »
« less
Event-scale power law recession analysis: quantifying methodological uncertainty
Abstract. The study of single streamflow recession events is receiving increasing attention following the presentation of novel theoretical explanations for the emergence of power law forms of the recession relationship, and drivers of its variability. Individually characterizing streamflow recessions often involves describing the similarities and differences between model parameters fitted to each recession time series. Significant methodological sensitivity has been identified in the fitting and parameterization of models that describe populations of many recessions, but the dependence of estimated model parameters on methodological choices has not been evaluated for event-by-event forms of analysis. Here, we use daily streamflow data from 16 catchments in northern California and southern Oregon to investigate how combinations of commonly used streamflow recession definitions and fitting techniques impact parameter estimates of a widely used power law recession model. Results are relevant to watersheds that are relatively steep, forested, and rain-dominated. The highly seasonal mediterranean climate of northern California and southern Oregon ensures study catchments explore a wide range of recession behaviors and wetness states, ideal for a sensitivity analysis. In such catchments, we show the following: (i) methodological decisions, including ones that have received little attention in the literature, can impact parameter value estimates and model goodness of fit; (ii) the central tendencies of event-scale recession parameter probability distributions are largely robust to methodological choices, in the sense that differing methods rank catchments similarly according to the medians of these distributions; (iii) recession parameter distributions are method-dependent, but roughly catchment-independent, such that changing the choices made about a particular method affects a given parameter in similar ways across most catchments; and (iv) the observed correlative relationship between the power-law recession scale parameter and catchment antecedent wetness varies depending on recession definition and fitting choices. Considering study results, we recommend a combination of four key methodological decisions to maximize the quality of fitted recession curves, and to minimize bias in the related populations of fitted recession parameters.
more »
« less
- Award ID(s):
- 1331940
- PAR ID:
- 10401595
- Date Published:
- Journal Name:
- Hydrology and Earth System Sciences
- Volume:
- 21
- Issue:
- 1
- ISSN:
- 1607-7938
- Page Range / eLocation ID:
- 65 to 81
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Headwater catchments have strong impacts on downstream waterways, near‐shore ecosystems, and the quality of water available for growing human populations. Thus, understanding how water and solutes are exported through these upland landscapes is critically important. A growing body of literature highlights the interaction of topography, climate, and the critical zone structure as a key control on streamflow and chemical export. However, more focused work is needed to pinpoint how variability in subsurface structure across lithologically complex regions impacts streamflow and chemical signals at catchment outlets. Here, we aim to better understand how lithology and subsurface critical zones modulate streamflow response and solute export patterns in two central coastal California headwater catchments that are similar in topography, vegetation, and climate but have different lithologies. We monitored streamflow and collected surface water samples at the catchment outlets for dissolved major ions and organic carbon (DOC) for two consecutive water years. The catchment with mélange bedrock displayed much flashier hydrologic behavior with 7.8 times higher peak flow values and 1.9 times higher mean event concentrations of DOC, suggesting shorter and shallower hydrologic flow paths that likely arise from regions of shallower bedrock. Despite distinct hydrologic behavior and DOC export, dissolved major ion concentrations were broadly similar and chemostatic, which may be driven by rapid chemical reactions in the critical zone of both catchments. Our work contributes to building an integrated understanding of how subtle differences in catchment structure can have profound impacts on how water and solutes are routed through headwater catchments.more » « less
-
Abstract Recent studies have demonstrated that compartmentalized pools of water preferentially supply either plant transpiration (poorly mobile water) or streamflow and groundwater (highly mobile water) in some catchments, a phenomenon referred to as ecohydrologic separation. The omission of processes accounting for ecohydrologic separation in standard applications of hydrological models is expected to influence estimates of water residence times and plant water availability. However, few studies have tested this expectation or investigated how ecohydrologic separation alters interpretations of stores and fluxes of water within a catchment. In this study, we compare two rainfall‐runoff models that integrate catchment‐scale representations of transport, one that incorporates ecohydrologic separation and one that does not. The models were developed for a second‐order watershed at the H.J. Andrews Experimental Forest (Oregon, USA), the site where ecohydrologic separation was first observed, and calibrated against multiple years of stream discharge and chloride concentration. Model structural variations caused mixed results for differences in calibrated parameters and differences in storage between reservoirs. However, large differences in catchment storage volumes and fluxes arise when considering only mobile water. These changes influence interpreted residence times for streamflow‐generating water, demonstrating the importance of ecohydrologic separation in catchment‐scale water and solute transport.more » « less
-
Top-Down Approach for Time-Variant Anthropogenic Signature Attribution in Socio-Hydrological SystemsIn the Anthropocene, humans have altered the properties and processes of hydrological systems across scales. The extent of human intervention in the landscape limits the utility of traditional hydrological modelling schemes. Since purely hydrological conceptual models no longer fit these systems, hydrologists must integrate key human interventions into conceptual models of human-modified catchments. Despite the advances in analyzing the observed changes within the hydrological cycle using bottom-up (or reductionist) modelling approaches, the aptitude of top-down hydrologic schemes for socio-hydrological system analysis is still untested. Here we show the potential of top-down hydrological modelling human modified watersheds using anthropogenic hydrological signatures. Specifically, we assess the ability of the top-down modelling method in human-modified catchments to improve the representation hydrological signatures (e.g. mean monthly runoff, flow duration curve) while ensuring a sufficient, but not excessive, level of complexity in model formulation. First, we develop new conceptual models which include human hydrological modifications commonly identified in the literature. Then, we link these new features in the conceptual models to features in the hydrological signatures. We apply the proposed methodology to the Lake Mendocino Watershed in Northern California, US. We compare a purely hydrological model developed for this catchment based on natural watershed properties using naturalized streamflow to a hydrological model of the human-modified catchment using observed streamflow. We anticipate that the proposed approach contributes to the development of detection and attribution frameworks for key anthropogenic changes of observed hydrological variability and improved model performance in human-modified catchments.more » « less
-
Abstract Predicting the proportion of the water year a given stream will remain at or above various flow thresholds is critically important for making sound water management decisions. Flow duration curves (FDCs) succinctly capture this information using all data available over some historical period, while annual flow duration curves (AFDCs) instead use data from each individual water year. Analyzing the population of AFDCs, and in particular the tails of this distribution, can allow water managers to better prepare for years with extreme streamflow conditions. However, long time series of observations are necessary to capture interannual streamflow variations and are problematic to obtain in rapidly changing and poorly gauged catchments. By incorporating a process‐based model to construct AFDCs based on daily rainfall statistics and flow recession characteristics, the proposed approach is a first step toward addressing this challenge. Results indicate that prediction performance varies substantially across flow quantiles and that the current model fails to properly capture the interannual variability of low flows. Numerical analyses attributed these errors to nonlinearity in storage‐discharge relation, rather than cross‐scale streamflow correlations and non‐Poissonian rainfall, explaining the origin of commonly observed heavy‐tailed behavior in low flow quantiles. We present a case study on hydroelectric power generation, showing that faithfully capturing both interannual streamflow variability and recession nonlinearity has important implications for installation profitability.more » « less
An official website of the United States government

