skip to main content


Title: Top-Down Approach for Time-Variant Anthropogenic Signature Attribution in Socio-Hydrological Systems
In the Anthropocene, humans have altered the properties and processes of hydrological systems across scales. The extent of human intervention in the landscape limits the utility of traditional hydrological modelling schemes. Since purely hydrological conceptual models no longer fit these systems, hydrologists must integrate key human interventions into conceptual models of human-modified catchments. Despite the advances in analyzing the observed changes within the hydrological cycle using bottom-up (or reductionist) modelling approaches, the aptitude of top-down hydrologic schemes for socio-hydrological system analysis is still untested. Here we show the potential of top-down hydrological modelling human modified watersheds using anthropogenic hydrological signatures. Specifically, we assess the ability of the top-down modelling method in human-modified catchments to improve the representation hydrological signatures (e.g. mean monthly runoff, flow duration curve) while ensuring a sufficient, but not excessive, level of complexity in model formulation. First, we develop new conceptual models which include human hydrological modifications commonly identified in the literature. Then, we link these new features in the conceptual models to features in the hydrological signatures. We apply the proposed methodology to the Lake Mendocino Watershed in Northern California, US. We compare a purely hydrological model developed for this catchment based on natural watershed properties using naturalized streamflow to a hydrological model of the human-modified catchment using observed streamflow. We anticipate that the proposed approach contributes to the development of detection and attribution frameworks for key anthropogenic changes of observed hydrological variability and improved model performance in human-modified catchments.  more » « less
Award ID(s):
1913920
NSF-PAR ID:
10495868
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Format(s):
Medium: X
Location:
American Geophysical Union Fall Meeting, Virtual
Sponsoring Org:
National Science Foundation
More Like this
  1. Hydrological systems in the Anthropocene have shown substantial shifts from their natural processes due to human modifications. Consequently, deploying coupled human-water modeling is a critical tool to analyze observed changes. However, the development of socio-hydrological models often requires extensive qualitative data collection in the field and analysis. Despite the advances in developing inter-disciplinary methodologies in utilizing qualitative data for coupled human-water modeling, there is a need to identify influential parameters in these systems to inform data collection. Here, we present an exploratory socio-hydrological model to systemically investigate the feedback system of public infrastructure providers, resource users, and the dynamics of water scarcity at the catchment scale to inform data collection and analysis in the field. Specifically, we propose a novel socio-hydrological model by employing and integrating a top-down hydrological model and an extension of Aqua.MORE Model (an Agent-Based Model designed to simulate dynamics of water supply and demand). Specifically, we model alternate behavioral theories of human decision-making to represent the agents" behavior. Then, we perform sensitivity analysis techniques to identify key socio-economic and behavioral parameters affecting emergence patterns in a stylized human-dominated catchment. We apply the proposed methodology to the Lake Mendocino Watershed in Northern California, US. The results will potentially point which parameters are influential and how they could be mapped to a particular interview or survey question. This study will help us to identify features of decision-making behavior for inclusion in fieldwork, that be might be overlooked in the absence of the proposed modeling. We anticipate that the proposed approach also contributes to the current Panta Rhei Research Initiative of the International Association of Hydrological Sciences (IAHS) which aims at improving the interpretation of the hydrological processes governing the socio-hydrological systems by focusing on their changing dynamics in connection with rapidly changing human systems. 
    more » « less
  2. Abstract. Exchanges between groundwater and surface water play a key role for ecosystem preservation, especially in headwater catchments where groundwater discharge into streams highly contributes to streamflow generation and maintenance. Despite several decades of research, investigating the spatial variability in groundwater discharge into streams still remains challenging mainly because groundwater/surface water interactions are controlled by multi-scale processes. In this context, we evaluated the potential of using FO-DTS (fibre optic distributed temperature sensing) technology to locate and quantify groundwater discharge at a high resolution. To do so, we propose to combine, for the first time, long-term passive DTS measurements and active DTS measurements by deploying FO cables in the streambed sediments of a first- and second-order stream in gaining conditions. The passive DTS experiment provided 8 months of monitoring of streambed temperature fluctuations along more than 530 m of cable, while the active DTS experiment, performed during a few days, allowed a detailed andaccurate investigation of groundwater discharge variability over a 60 m length heated section. Long-term passive DTS measurements turn out to bean efficient method to detect and locate groundwater discharge along several hundreds of metres. The continuous 8 months of monitoring allowed the highlighting of changes in the groundwater discharge dynamic in response to the hydrological dynamic of the headwater catchment. However, the quantification of fluxes with this approach remains limited given the high uncertainties on estimates, due to uncertainties on thermal properties and boundary conditions. On the contrary, active DTS measurements, which have seldom been performed in streambed sediments and never applied to quantify water fluxes, allow for the estimation of the spatial distribution of both thermal conductivities and the groundwater fluxes at high resolution all along the 60 m heated section of the FO cable. The method allows for the description of the variability in streambed properties at an unprecedented scale and reveals the variability in groundwater inflows at small scales. In the end, this study shows the potential and the interest of the complementary use of passive and active DTS experiments to quantify groundwater discharge at different spatial and temporal scales. Thus, results show that groundwater discharges are mainly concentrated in the upstream part of the watershed, where steepest slopes are observed, confirming the importance of the topography in the stream generation in headwater catchments. However, through the high spatial resolution of measurements, it was also possible to highlight the presence of local and highly contributive groundwater inflows, probably driven by local heterogeneities. The possibility to quantify groundwater discharge at a high spatial resolution through active DTS offers promising perspectives for the characterization of distributed responses times but also for studying biogeochemical hotspots and hot moments. 
    more » « less
  3. Abstract. Streamflow regimes are rapidly changing in many regions of the world. Attribution of these changes to specific hydrological processes and their underlying climatic and anthropogenic drivers is essential to formulate an effective water policy. Traditional approaches to hydrologic attribution rely on the ability to infer hydrological processes through the development of catchment-scale hydrological models. However, such approaches are challenging to implement in practice due to limitations in using models to accurately associate changes in observed outcomes with corresponding drivers. Here we present an alternative approach that leverages the method of multiple hypotheses to attribute changes in streamflow in the Upper Jhelum watershed, an important tributary headwater region of the Indus basin, where a dramatic decline in streamflow since 2000 has yet to be adequately attributed to its corresponding drivers. We generate and empirically evaluate a series of alternative and complementary hypotheses concerning distinct components of the water balance. This process allows a holistic understanding of watershed-scale processes to be developed, even though the catchment-scale water balance remains open. Using remote sensing and secondary data, we explore changes in climate, surface water, and groundwater. The evidence reveals that climate, rather than land use, had a considerably stronger influence on reductions in streamflow, both through reduced precipitation and increased evapotranspiration. Baseflow analyses suggest different mechanisms affecting streamflow decline in upstream and downstream regions, respectively. These findings offer promising avenues for future research in the Upper Jhelum watershed, and an alternative approach to hydrological attribution in data-scarce regions. 
    more » « less
  4. Abstract

    Recent studies have demonstrated that compartmentalized pools of water preferentially supply either plant transpiration (poorly mobile water) or streamflow and groundwater (highly mobile water) in some catchments, a phenomenon referred to as ecohydrologic separation. The omission of processes accounting for ecohydrologic separation in standard applications of hydrological models is expected to influence estimates of water residence times and plant water availability. However, few studies have tested this expectation or investigated how ecohydrologic separation alters interpretations of stores and fluxes of water within a catchment. In this study, we compare two rainfall‐runoff models that integrate catchment‐scale representations of transport, one that incorporates ecohydrologic separation and one that does not. The models were developed for a second‐order watershed at the H.J. Andrews Experimental Forest (Oregon, USA), the site where ecohydrologic separation was first observed, and calibrated against multiple years of stream discharge and chloride concentration. Model structural variations caused mixed results for differences in calibrated parameters and differences in storage between reservoirs. However, large differences in catchment storage volumes and fluxes arise when considering only mobile water. These changes influence interpreted residence times for streamflow‐generating water, demonstrating the importance of ecohydrologic separation in catchment‐scale water and solute transport.

     
    more » « less
  5. Abstract

    Tracer‐aided rainfall‐runoff modelling is a promising tool for understanding catchment hydrology, particularly when tracers provide information about coupled hydrological‐biogeochemical processes. Such models allow for predicting the quality and quantity of water under changing climatic and anthropogenic conditions. Here, we present the Spatially‐distributed Tracer‐Aided Rainfall‐Runoff model with a coupled biogeochemical reactive tracer module (STARR‐DOC) to simulate dissolved organic carbon (DOC) dynamics and sources. The STARR‐DOC model was developed and tested for a humid high Andean ecosystem (páramo) using high‐resolution hourly DOC and hydrometeorological data to simulate hourly discharge and DOC at a fine spatial (10 × 10 m) resolution. Overall, the model was able to acceptably reproduce discharge (KGE ~ 0.45) and stream DOC (KGE ~ 0.69) dynamics. Spatially distributed DOC simulations were independently compared using point DOC measurements for different soil types across the catchment, which allowed for identifying DOC production hot spots and hot moments. Results showed higher hydrological connectivity between slopes and valleys with increasing precipitation. Wetter conditions also favoured DOC production (wet month = 82 mg L−1, dry month = 5 mg L−1) and transport to the stream network (DOC concentrations: during events ~15 mg L−1, during baseflows ~4 mg L−1). Our results also suggest that minor changes in meteorological conditions directly affect páramo soil water dynamics and biogeochemistry. Knowledge of when and where DOC production in mountain catchments is greatest is important for water managers to understand when they make decisions about water security, especially considering climate change predictions for the Andean region.

     
    more » « less