skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Problems of Problem-Based Learning: Exploring Meta-Agency in Problem-Based Cybersecurity Learning in College Education
In college cybersecurity education, problem-based learning has been introduced to promote student agency in solving a complex problem. However, a dilemma of balancing the student agency persist and previous research has focused on students’ cognitive, metacognitive, and regulatory to enhance the efficacy of PBL. Given the importance of students’ self-awareness of their agency, this study suggests a concept of meta-agency as an essential learner characteristic that influences the effectiveness of student agency in PBL. Four dimensions of meta-agency, perceptions of productive struggle, expectation alignment between instructor and students, strategies for regulating agency, and familiarity with PBL tasks, were qualitatively explored with student interview data. Features of meta-agency and how students’ meta-agency level develop through cybersecurity PBL sessions were further investigated.  more » « less
Award ID(s):
2114789
PAR ID:
10401618
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Annual Meeting of the American Educational Research Association 2023
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In problem-based learning (PBL), individual differences in students’ use of metacognition and self-regulation skills exist and calls for extensive research in postsecondary STEM education. This study focuses on students’ uncertainty management in PBL. A scale of the uncertainty management in PBL (UM-PBL) was developed. Exploratory factor analysis was conducted and showed that the UM-PBL has substantial reliability and a total of 14 items across three constructs of a) perception of uncertainty in learning to solve problems, b) self-efficacy in and c) strategy for uncertainty management. Gender differences in the first two constructs were found, confirming its known-group validation. Students’ problem-solving scores were positively correlated with scores of the first two constructs, suggesting its predictability of its relationship with academic performance. 
    more » « less
  2. Lecture-based teaching paired with laboratory-based exercises is most commonly used in cybersecurity instruction. However, it focuses more on theories and models but fails to provide learners with practical problem-solving skills and opportunities to explore real-world cybersecurity challenges. Problem-based Learning (PBL) has been identified as an efficient pedagogy for many disciplines, especially engineering education. It provides learners with real-world complex problem scenarios, which encourages learners to collaborate with classmates, ask questions and develop a deeper understanding of the concepts while solving real-world cybersecurity problems. This paper describes the application of the PBL methodology to enhance professional training-based cybersecurity education. The authors developed an online laboratory environment to apply PBL with Knowledge-Graph (KG) based guidance for hands-on labs in cybersecurity training.Learners are provided access to a virtual lab environment with knowledge graph guidance to simulated real-life cybersecurity scenarios. Thus, they are forced to think independently and apply their knowledge to create cyber-attacks and defend approaches to solve problems provided to them in each lab. Our experimental study shows that learners tend to gain more enhanced learning outcomes by leveraging PBL with knowledge graph guidance, become more aware of cybersecurity and relevant concepts, and also express interest in keep learning of cybersecurity using our system. 
    more » « less
  3. Abstract Background Traditionally, doctoral student education in the biomedical sciences relies on didactic coursework to build a foundation of scientific knowledge and an apprenticeship model of training in the laboratory of an established investigator. Recent recommendations for revision of graduate training include the utilization of graduate student competencies to assess progress and the introduction of novel curricula focused on development of skills, rather than accumulation of facts. Evidence demonstrates that active learning approaches are effective. Several facets of active learning are components of problem-based learning (PBL), which is a teaching modality where student learning is self-directed toward solving problems in a relevant context. These concepts were combined and incorporated in creating a new introductory graduate course designed to develop scientific skills (student competencies) in matriculating doctoral students using a PBL format. Methods Evaluation of course effectiveness was measured using the principals of the Kirkpatrick Four Level Model of Evaluation. At the end of each course offering, students completed evaluation surveys on the course and instructors to assess their perceptions of training effectiveness. Pre- and post-tests assessing students’ proficiency in experimental design were used to measure student learning. Results The analysis of the outcomes of the course suggests the training is effective in improving experimental design. The course was well received by the students as measured by student evaluations (Kirkpatrick Model Level 1). Improved scores on post-tests indicate that the students learned from the experience (Kirkpatrick Model Level 2). A template is provided for the implementation of similar courses at other institutions. Conclusions This problem-based learning course appears effective in training newly matriculated graduate students in the required skills for designing experiments to test specific hypotheses, enhancing student preparation prior to initiation of their dissertation research. 
    more » « less
  4. null (Ed.)
    Abstract Problem-based learning (PBL) has been effectively used within BME education, though there are several challenges in its implementation within courses with larger enrollments. Furthermore, the sudden transition to online learning from the COVID-19 pandemic introduced additional challenges in creating a similar PBL experience in an online environment. Online constrained PBL was implemented through asynchronous modules and synchronous web conferencing with rotating facilitators. Overall, facilitators perceived web conferencing facilitation to be similar to in-person, but noted that students were more easily “hidden” or distracted. Students did not comment on web conferencing facilitation specifically, but indicated the transition to online PBL was smooth. Course instructors identified that a fully synchronous delivery as well as modifications of Group Meeting Minutes assignments as potential modifications for future offerings. Future work will aim to address the perceptions and effectiveness of web conferencing facilitation for PBL courses within an undergraduate BME curriculum, as web conferencing could prove to be another significant breakthrough in addressing challenges of problem-based learning courses. 
    more » « less
  5. Abstract  
    more » « less