Abstract A companion paper by Fritts et al. reviews extensive evidence for Kelvin–Helmholtz instability (KHI) “tube” and “knot” (T&K) dynamics at multiple altitudes in the atmosphere and in the oceans that reveal these dynamics to be widespread. A second companion paper by Fritts and Wang reveals KHI T&K events at larger and smaller scales to arise on multiple highly stratified sheets in a direct numerical simulation (DNS) of idealized, multiscale gravity wave–fine structure interactions. These studies reveal the diverse environments in which KHI T&K dynamics arise and suggest their potentially ubiquitous occurrence throughout the atmosphere and oceans. This paper describes a DNS of multiple KHI evolutions in wide and narrow domains enabling and excluding T&K dynamics. These DNSs employ common initial conditions but are performed for decreasing Reynolds numbers (Re) to explore whether T&K dynamics enable enhanced KHI-induced turbulence where it would be weaker or not otherwise occur. The major results are that KHI T&K dynamics extend elevated turbulence intensities and energy dissipation ratesεto smaller Re. We expect these results to have important implications for improving parameterizations of KHI-induced turbulence in the atmosphere and oceans. Significance StatementTurbulence due to small-scale shear flows plays important roles in the structure and variability of the atmosphere and oceans extending to large spatial and temporal scales. New modeling reveals that enhanced turbulence accompanies Kelvin–Helmholtz instabilities (KHIs) that arise on unstable shear layers and exhibit what were initially described as “tubes” and “knots” (T&K) when they were first observed in early laboratory experiments. We perform new modeling to explore two further aspects of these dynamics: 1) can KHI T&K dynamics increase turbulence intensities compared to KHI without T&K dynamics for the same initial fields and 2) can KHI T&K dynamics enable elevated turbulence and energy dissipation extending to more viscous flows? We show here that the answer to both questions is yes.
more »
« less
Emergent isotropy of a wave-turbulent cascade in the Gross-Pitaevskii model
Abstract The restoration of symmetries is one of the most fascinating properties of turbulence. We report a study of the emergence of isotropy in the Gross-Pitaevskii model with anisotropic forcing. Inspired by recent experiments, we study the dynamics of a Bose-Einstein condensate in a cylindrical box driven along the symmetry axis of the trap by a spatially uniform force. We introduce a measure of anisotropy A ( k , t ) defined on the momentum distributions , and study the evolution of A ( k , t ) and as turbulence proceeds. As the system reaches a steady state, the anisotropy, large at low momenta because of the large-scale forcing, is greatly reduced at high momenta. While exhibits a self-similar cascade front propagation, A ( k , t ) decreases without such self-similar dynamics. Finally, our numerical calculations show that the isotropy of the steady state is robust with respect to the amplitude of the drive.
more »
« less
- Award ID(s):
- 1945324
- PAR ID:
- 10401656
- Date Published:
- Journal Name:
- Europhysics Letters
- Volume:
- 140
- Issue:
- 6
- ISSN:
- 0295-5075
- Page Range / eLocation ID:
- 66002
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
High Reynolds number wall-bounded turbulent flows subject to buoyancy forces are fraught with complex dynamics originating from the interplay between shear generation of turbulence ( $$S$$ ) and its production or destruction by density gradients ( $$B$$ ). For horizontal walls, $$S$$ augments the energy budget of the streamwise fluctuations, while $$B$$ influences the energy contained in the vertical fluctuations. Yet, return to isotropy remains a tendency of such flows where pressure–strain interaction redistributes turbulent energy among all three velocity components and thus limits, but cannot fully eliminate, the anisotropy of the velocity fluctuations. A reduced model of this energy redistribution in the inertial (logarithmic) sublayer, with no tuneable constants, is introduced and tested against large eddy and direct numerical simulations under both stable ( $B<0$ ) and unstable ( $B>0$ ) conditions. The model links key transitions in turbulence statistics with flux Richardson number (at $$Ri_{f}=-B/S\approx$$ $-2$ , $-1$ and $-0.5$ ) to shifts in the direction of energy redistribution. Furthermore, when coupled to a linear Rotta-type closure, an extended version of the model can predict individual variance components, as well as the degree of turbulence anisotropy. The extended model indicates a regime transition under stable conditions when $$Ri_{f}$$ approaches $$Ri_{f,max}\approx +0.21$$ . Buoyant destruction $$B$$ increases with increasing stabilizing density gradients when $$Ri_{f}more » « less
-
Abstract A companion paper by Fritts et al. reviews evidence for Kelvin–Helmholtz instability (KHI) “tube” and “knot” (T&K) dynamics that appear to be widespread throughout the atmosphere. Here we describe the results of an idealized direct numerical simulation of multiscale gravity wave dynamics that reveals multiple larger- and smaller-scale KHI T&K events. The results enable assessments of the environments in which these dynamics arise and their competition with concurrent gravity wave breaking in driving turbulence and energy dissipation. A larger-scale event is diagnosed in detail and reveals diverse and intense T&K dynamics driving more intense turbulence than occurs due to gravity wave breaking in the same environment. Smaller-scale events reveal that KHI T&K dynamics readily extend to weaker, smaller-scale, and increasingly viscous shear flows. Our results suggest that KHI T&K dynamics should be widespread, perhaps ubiquitous, wherever superposed gravity waves induce intensifying shear layers, because such layers are virtually always present. A second companion paper demonstrates that KHI T&K dynamics exhibit elevated turbulence generation and energy dissipation rates extending to smaller Reynolds numbers for relevant KHI scales wherever they arise. These dynamics are suggested to be significant sources of turbulence and mixing throughout the atmosphere that are currently ignored or underrepresented in turbulence parameterizations in regional and global models. Significance StatementAtmospheric observations reveal that Kelvin–Helmholtz instabilities (KHI) often exhibit complex interactions described as “tube” and “knot” (T&K) dynamics in the presence of larger-scale gravity waves (GWs). These dynamics may prove to make significant contributions to energy dissipation and mixing that are not presently accounted for in large-scale modeling and weather prediction. We explore here the occurrence of KHI T&K dynamics in an idealized model that describes their behavior and character arising at larger and smaller scales due to superposed, large-amplitude GWs. The results reveal that KHI T&K dynamics arise at larger and smaller scales, and that their turbulence intensities can be comparable to those of the GWs.more » « less
-
We study structure formation in two-dimensional turbulence driven by an external force, interpolating between linear instability forcing and random stirring, subject to nonlinear damping. Using extensive direct numerical simulations, we uncover a rich parameter space featuring four distinct branches of stationary solutions: large-scale vortices, hybrid states with embedded shielded vortices (SVs) of either sign, and two states composed of many similar SVs. Of the latter, the first is a dense vortex gas where all SVs have the same sign and diffuse across the domain. The second is a hexagonal vortex crystal forming from this gas when the linear instability is sufficiently weak. These solutions coexist stably over a wide parameter range. The late-time evolution of the system from small-amplitude initial conditions is nearly self-similar, involving three phases: initial inverse cascade, random nucleation of SVs from turbulence and, once a critical number of vortices is reached, a phase of explosive nucleation of SVs, leading to a statistically stationary state. The vortex gas is continued in the forcing parameter, revealing a sharp transition towards the crystal state as the forcing strength decreases. This transition is analysed in terms of the diffusivity of individual vortices using ideas from statistical physics. The crystal can also decay via an inverse cascade resulting from the breakdown of shielding or insufficient nonlinear damping acting on SVs. Our study highlights the importance of the forcing details in two-dimensional turbulence and reveals the presence of non-trivial SV states in this system, specifically the emergence and melting of a vortex crystal.more » « less
-
SUMMARY Evidence of seismic anisotropy is widespread within the Earth, including from individual crystals, rocks, borehole measurements, active-source seismic data, and global seismic data. The seismic anisotropy of a material determines how wave speeds vary as a function of propagation direction and polarization, and it is characterized by density and the elastic map, which relates strain and stress in the material. Associated with the elastic map is a symmetric $$6 \times 6$$ matrix, which therefore has 21 parameters. The 21-D space of elastic maps is vast and poses challenges for both theoretical analysis and typical inverse problems. Most estimation approaches using a given set of directional wave speed measurements assume a high-symmetry approximation, typically either in the form of isotropy (2 parameters), vertical transverse isotropy (radial anisotropy: 5 parameters), or horizontal transverse isotropy (azimuthal anisotropy: 6 parameters). We offer a general approach to explore the space of elastic maps by starting with a given elastic map $$\mathbf {T}$$. Using a combined minimization and projection procedure, we calculate the closest $$\Sigma$$-maps to $$\mathbf {T}$$, where $$\Sigma$$ is one of the eight elastic symmetry classes: isotropic, cubic, transverse isotropic, trigonal, tetragonal, orthorhombic, monoclinic and trivial. We apply this approach to 21-parameter elastic maps derived from laboratory measurements of minerals; the measurements include dependencies on pressure, temperature, and composition. We also examine global elasticity models derived from subduction flow modelling. Our approach offers a different perspective on seismic anisotropy and motivates new interpretations, such as for why elasticity varies as a function of pressure, temperature, and composition. The two primary advances of this study are (1) to provide visualization of elastic maps, including along specific pathways through the space of model parameters, and (2) to offer distinct options for reducing the complexity of a given elastic map by providing a higher-symmetry approximation or a lower-anisotropic version. This could contribute to improved imaging and interpretation of Earth structure and dynamics from seismic anisotropy.more » « less
An official website of the United States government

