skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Revealing the Milky Way’s most recent major merger with a Gaia EDR3 catalogue of machine-learned line-of-sight velocities
ABSTRACT Machine learning can play a powerful role in inferring missing line-of-sight velocities from astrometry in surveys such as Gaia. In this paper, we apply a neural network to Gaia Early Data Release 3 (EDR3) and obtain line-of-sight velocities and associated uncertainties for ∼92 million stars. The network, which takes as input a star’s parallax, angular coordinates, and proper motions, is trained and validated on ∼6.4 million stars in Gaia with complete phase-space information. The network’s uncertainty on its velocity prediction is a key aspect of its design; by properly convolving these uncertainties with the inferred velocities, we obtain accurate stellar kinematic distributions. As a first science application, we use the new network-completed catalogue to identify candidate stars that belong to the Milky Way’s most recent major merger, Gaia-Sausage-Enceladus (GSE). We present the kinematic, energy, angular momentum, and spatial distributions of the ∼450 000 GSE candidates in this sample, and also study the chemical abundances of those with cross matches to GALAH and APOGEE. The network’s predictive power will only continue to improve with future Gaia data releases as the training set of stars with complete phase-space information grows. This work provides a first demonstration of how to use machine learning to exploit high-dimensional correlations on data to infer line-of-sight velocities, and offers a template for how to train, validate, and apply such a neural network when complete observational data is not available.  more » « less
Award ID(s):
2019786
PAR ID:
10401676
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
521
Issue:
2
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 1633-1645
Size(s):
p. 1633-1645
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Until the recent advent of Gaia Data Release 2 (DR2) and deep multi-object spectroscopy, it has been difficult to obtain 6D phase space information for large numbers of stars beyond 4 kpc, in particular towards the Galactic Centre, where dust and crowding are significant. We combine line-of-sight velocities from the Abundances and Radial velocity Galactic Origins Survey (ARGOS) with proper motions from Gaia DR2 to obtain a sample of ∼7000 red clump stars with 3D velocities. We perform a large-scale stellar kinematics study of the Milky Way bulge to characterize the bulge velocity ellipsoids in 20 fields. The tilt of the major-axis of the velocity ellipsoid in the radial-longitudinal velocity plane, or vertex deviation, is characteristic of non-axisymmetric systems and a significant tilt is a robust indicator of non-axisymmetry or bar presence. We compare the observations to the predicted kinematics of an N-body boxy-bulge model formed from dynamical instabilities. In the model, the lv values are strongly correlated with the angle (α) between the bulge major-axis and the Sun-Galactic centre line of sight. We use a maximum likelihood method to obtain an independent measurement of α, from bulge stellar kinematics alone, performing a robust error analysis. The most likely value of α given our model is α = (29 ± 3)○, with an additional systematic uncertainty due to comparison with one specific model. In Baade’s window, the metal-rich stars display a larger vertex deviation (lv = −40○) than the metal-poor stars (lv = 10○) but we do not detect significant lv−metallicity trends in the other fields. 
    more » « less
  2. ABSTRACT Understanding local stellar kinematic substructures in the solar neighbourhood helps build a complete picture of the formation of the Milky Way, as well as an empirical phase space distribution of dark matter that would inform detection experiments. We apply the clustering algorithm hdbscan on the Gaia early third data release to identify a list of stable clusters in velocity space and action-angle space by taking into account the measurement uncertainties and studying the stability of the clustering results. We find 1405 (497) stars in 23 (6) robust clusters in velocity space (action-angle space) that are consistently not associated with noise. We discuss the kinematic properties of these structures and study whether many of the small clusters belong to a similar larger cluster based on their chemical abundances. They are attributed to the known structures: the Gaia Sausage-Enceladus, the Helmi Stream, and globular cluster NGC 3201 are found in both spaces, while NGC 104 and the thick disc (Sequoia) are identified in velocity space (action-angle space). Although we do not identify any new structures, we find that the hdbscan member selection of already known structures is unstable to input kinematics of the stars when resampled within their uncertainties. We therefore present the stable subset of local kinematic structures, which are consistently identified by the clustering algorithm, and emphasize the need to take into account error propagation during both the manual and automated identification of stellar structures, both for existing ones as well as future discoveries. 
    more » « less
  3. null (Ed.)
    We present a chemo-dynamical study of the Orphan stellar stream using a catalog of RR Lyrae pulsating variable stars for which photometric, astrometric, and spectroscopic data are available. Employing low-resolution spectra from the Sloan Digital Sky Survey (SDSS), we determined line-of-sight velocities for individual exposures and derived the systemic velocities of the RR Lyrae stars. In combination with the stars’ spectroscopic metallicities and Gaia EDR3 astrometry, we investigated the northern part of the Orphan stream. In our probabilistic approach, we found 20 single mode RR Lyrae variables likely associated with the Orphan stream based on their positions, proper motions, and distances. The acquired sample permitted us to expand our search to nonvariable stars in the SDSS dataset, utilizing line-of-sight velocities determined by the SDSS. We found 54 additional nonvariable stars linked to the Orphan stream. The metallicity distribution for the identified red giant branch stars and blue horizontal branch stars is, on average, −2.13 ± 0.05 dex and −1.87 ± 0.14 dex, with dispersions of 0.23 and 0.43 dex, respectively. The metallicity distribution of the RR Lyrae variables peaks at −1.80 ± 0.06 dex and a dispersion of 0.25 dex. Using the collected stellar sample, we investigated a possible link between the ultra-faint dwarf galaxy Grus II and the Orphan stream. Based on their kinematics, we found that both the stream RR Lyrae and Grus II are on a prograde orbit with similar orbital properties, although the large uncertainties on the dynamical properties render an unambiguous claim of connection difficult. At the same time, the chemical analysis strongly weakens the connection between both. We argue that Grus II in combination with the Orphan stream would have to exhibit a strong inverse metallicity gradient, which to date has not been detected in any Local Group system. 
    more » « less
  4. Abstract The majority of the Milky Way’s stellar halo consists of debris from our galaxy’s last major merger, the Gaia-Sausage-Enceladus (GSE). In the past few years, stars from the GSE have been kinematically and chemically studied in the inner 30 kpc of our galaxy. However, simulations predict that accreted debris could lie at greater distances, forming substructures in the outer halo. Here we derive metallicities and distances using Gaia DR3 XP spectra for an all-sky sample of luminous red giant stars, and map the outer halo with kinematics and metallicities out to 100 kpc. We obtain follow-up spectra of stars in two strong overdensities—including the previously identified outer Virgo Overdensity—and find them to be relatively metal rich and on predominantly retrograde orbits, matching predictions from simulations of the GSE merger. We argue that these are apocentric shells of GSE debris, forming 60–90 kpc counterparts to the 15–20 kpc shells that are known to dominate the inner stellar halo. Extending our search across the sky with literature radial velocities, we find evidence for a coherent stream of retrograde stars encircling the Milky Way from 50 to 100 kpc, in the same plane as the Sagittarius Stream but moving in the opposite direction. These are the first discoveries of distant and structured imprints from the GSE merger, cementing the picture of an inclined and retrograde collision that built up our galaxy’s stellar halo. 
    more » « less
  5. Context. Evidence suggests that the Milky Way (MW) underwent a major collision with the Gaia–Sausage/Enceladus (GSE) dwarf galaxy around cosmic noon. While GSE has since been fully disrupted, it brought in ex situ stars and dynamically heated in situ stars into the halo. In addition, the gas-rich merger may have triggered a burst of in situ star formation, potentially giving rise to a chemically distinct stellar component. Aims. We investigated the region of phase space where stars formed during the GSE merger likely reside, and retain distinct chemical and dynamical signatures. Methods. Building on our previous investigation of metallicity ([Fe/H]) and vertical angular momentum (LZ) distributions, we analysed spectroscopic samples from GALAH, APOGEE, SDSS, and LAMOST, combined withGaiakinematics. We focused on high proper-motion stars as effective tracers of the phase-space volume likely influenced by the GSE merger. To correct for selection effects, we incorporated metallicity estimates derived from SDSS and SMSS photometry. Results. Our analysis reveals that low-αstars with GSE-like kinematics exhibit bimodality in [Na/Fe] and [Al/Fe] at −1.0 ≲[Fe/H] ≲ −0.4. One group follows the low light-element abundances of GSE stars, while another exhibits enhanced values. These low-α, high-Na stars have eccentric orbits but are more confined to the inner MW. Eos overlaps with a high-eccentricity subset of these stars, implying that it constitutes a smaller structure nested within the broader population. After correcting for sampling biases, we estimated a population ratio of approximately 1:10 between the low-α, high-Na stars and the GSE debris. Conclusions. These results suggest that the low-α, high-Na stars formed in a compact region, likely fuelled by gas from the GSE progenitor, analogous to clumpy star-forming clouds seen in high-redshift galaxies. Such stars may trace the first sparks of more extensive merger-driven starburst activity. 
    more » « less