skip to main content


Title: Polarization and phase control of electron injection and acceleration in the plasma by a self-steepening laser pulse
Abstract

We describe an interplay between two injection mechanism of background electrons into an evolving plasma bubble behind an intense laser pulse: one due to the overall bubble expansion, and another due to its periodic undulation. The two mechanisms occur simultaneously when an intense laser pulse propagating inside a plasma forms a shock-like steepened front. Periodic undulations of the plasma bubble along the laser propagation path can either inhibit or conspire with electron injection due to bubble expansion. We show that carrier-envelope-phase (CEP) controlled plasma bubble undulation induced by the self-steepening laser pulse produces a unique electron injector—expanding phase-controlled undulating bubble (EPUB). The longitudinal structure of the electron bunch injected by the EPUB can be controlled by laser polarization and power, resulting in high-charge (multiple nano-Coulombs) high-current (tens of kilo-amperes) electron beams with ultra-short (femtosecond-scale) temporal structure. Generation of high-energy betatron radiation with polarization- and CEP-controlled energy spectrum and angular distribution is analyzed as a promising application of EPUB-produced beams.

 
more » « less
NSF-PAR ID:
10401851
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
New Journal of Physics
Volume:
25
Issue:
3
ISSN:
1367-2630
Page Range / eLocation ID:
Article No. 033009
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ultrafast high-brightness X-ray pulses have proven invaluable for a broad range of research. Such pulses are typically generated via synchrotron emission from relativistic electron bunches using large-scale facilities. Recently, significantly more compact X-ray sources based on laser-wakefield accelerated (LWFA) electron beams have been demonstrated. In particular, laser-driven sources, where the radiation is generated by transverse oscillations of electrons within the plasma accelerator structure (so-called betatron oscillations) can generate highly-brilliant ultrashort X-ray pulses using a comparably simple setup. Here, we experimentally demonstrate a method to markedly enhance the parameters of LWFA-driven betatron X-ray emission in a proof-of-principle experiment. We show a significant increase in the number of generated photons by specifically manipulating the amplitude of the betatron oscillations by using our novel Transverse Oscillating Bubble Enhanced Betatron Radiation scheme. We realize this through an orchestrated evolution of the temporal laser pulse shape and the accelerating plasma structure. This leads to controlled off-axis injection of electrons that perform large-amplitude collective transverse betatron oscillations, resulting in increased radiation emission. Our concept holds the promise for a method to optimize the X-ray parameters for specific applications, such as time-resolved investigations with spatial and temporal atomic resolution or advanced high-resolution imaging modalities, and the generation of X-ray beams with even higher peak and average brightness.

     
    more » « less
  2. Abstract

    In the field of beam physics, two frontier topics have taken center stage due to their potential to enable new approaches to discovery in a wide swath of science. These areas are: advanced, high gradient acceleration techniques, and x-ray free electron lasers (XFELs). Further, there is intense interest in the marriage of these two fields, with the goal of producing a very compact XFEL. In this context, recent advances in high gradient radio-frequency cryogenic copper structure research have opened the door to the use of surface electric fields between 250 and 500 MV m−1. Such an approach is foreseen to enable a new generation of photoinjectors with six-dimensional beam brightness beyond the current state-of-the-art by well over an order of magnitude. This advance is an essential ingredient enabling an ultra-compact XFEL (UC-XFEL). In addition, one may accelerate these bright beams to GeV scale in less than 10 m. Such an injector, when combined with inverse free electron laser-based bunching techniques can produce multi-kA beams with unprecedented beam quality, quantified by 50 nm-rad normalized emittances. The emittance, we note, is the effective area in transverse phase space (x,px/mec) or (y,py/mec) occupied by the beam distribution, and it is relevant to achievable beam sizes as well as setting a limit on FEL wavelength. These beams, when injected into innovative, short-period (1–10 mm) undulators uniquely enable UC-XFELs having footprints consistent with university-scale laboratories. We describe the architecture and predicted performance of this novel light source, which promises photon production per pulse of a few percent of existing XFEL sources. We review implementation issues including collective beam effects, compact x-ray optics systems, and other relevant technical challenges. To illustrate the potential of such a light source to fundamentally change the current paradigm of XFELs with their limited access, we examine possible applications in biology, chemistry, materials, atomic physics, industry, and medicine—including the imaging of virus particles—which may profit from this new model of performing XFEL science.

     
    more » « less
  3. Abstract

    The past decade has seen tremendous progress in the production and utilization of vortex and vector laser pulses. Although both are considered as structured light beams, the vortex lasers have helical phase fronts and phase singularities, while the vector lasers have spatially variable polarization states and polarization singularities. In contrast to the vortex pulses that carry orbital angular momentum (OAM), the vector laser pulses have a complex spin angular momentum (SAM) and OAM coupling. Despite many potential applications enabled by such pulses, the generation of high-power/-intensity vortex and vector beams remains challenging. Here, we demonstrate using theory and three-dimensional simulations that the strongly-coupled stimulated Brillouin scattering (SC-SBS) process in plasmas can be used as a promising amplification technique with up to 65% energy transfer efficiency from the pump beam to the seed beam for both vortex and vector pulses. We also show that SC-SBS is strongly polarization-dependent in plasmas, enabling an all-optical polarization control of the amplified seed beam. Additionally, the interaction of such structured lasers with plasmas leads to various angular momentum couplings and decouplings that produce intense new light structures with controllable OAM and SAM. This scheme paves the way for novel optical devices such as plasma-based amplifiers and light field manipulators.

     
    more » « less
  4. Abstract Using plasma mirror injection we demonstrate, both analytically and numerically, that a circularly polarized helical laser pulse can accelerate highly collimated dense bunches of electrons to several hundred MeV using currently available laser systems. The circular-polarized helical (Laguerre–Gaussian) beam has a unique field structure where the transverse fields have helix-like wave-fronts which tend to zero on-axis where, at focus, there are large on-axis longitudinal magnetic and electric fields. The acceleration of electrons by this type of laser pulse is analyzed as a function of radial mode number and it is shown that the radial mode number has a profound effect on electron acceleration close to the laser axis. Using three-dimensional particle-in-cell simulations a circular-polarized helical laser beam with power of 0.6 PW is shown to produce several dense attosecond bunches. The bunch nearest the peak of the laser envelope has an energy of 0.47 GeV with spread as narrow as 10%, a charge of 26 pC with duration of ∼ 400 as, and a very low divergence of 20 mrad. The confinement by longitudinal magnetic fields in the near-axis region allows the longitudinal electric fields to accelerate the electrons over a long period after the initial reflection. Both the longitudinal E and B fields are shown to be essential for electron acceleration in this scheme. This opens up new paths toward attosecond electron beams, or attosecond radiation, at many laser facilities around the world. 
    more » « less
  5. Abstract

    Laser wakefield accelerators (LWFAs) have electric fields that are orders of magnitude larger than those of conventional accelerators, promising an attractive, small-scale alternative for next-generation light sources and lepton colliders. The maximum energy gain in a single-stage LWFA is limited by dephasing, which occurs when the trapped particles outrun the accelerating phase of the wakefield. Here, we demonstrate that a single space–time structured laser pulse can be used for ionization injection and electron acceleration over many dephasing lengths in the bubble regime. Simulations of a dephasingless laser wakefield accelerator driven by a 6.2-J laser pulse show 25 pC of injected charge accelerated over 20 dephasing lengths (1.3 cm) to a maximum energy of 2.1 GeV. The space–time structured laser pulse features an ultrashort, programmable-trajectory focus. Accelerating the focus, reducing the focused spot-size variation, and mitigating unwanted self-focusing stabilize the electron acceleration, which improves beam quality and leads to projected energy gains of 125 GeV in a single, sub-meter stage driven by a 500-J pulse.

     
    more » « less