skip to main content

This content will become publicly available on June 14, 2023

Title: In situ and ex situ processes for synthesizing metal multilayers with electronically conductive interfaces
A number of technological applications and scientific experiments require processes for preparing metal multilayers with electronically and thermally conductive interfaces. We investigate how in situ vs ex situ synthesis processes affect the thermal conductance of metal/metal interfaces. We use time-domain thermoreflectance experiments to study thermal transport in Au/Fe, Al/Cu, and Cu/Pt bilayer samples. We quantify the effect of exposing the bottom metal layer to an ambient environment prior to deposition of the top metal layer. We observe that for Au/Fe, exposure of the Fe layer to air before depositing the top Au layer significantly impedes interfacial electronic currents. Exposing Cu to air prior to depositing an Al layer effectively eliminates interfacial electronic heat currents between the two metal layers. Exposure to air appears to have no effect on interfacial transport in the Cu/Pt system. Finally, we show that a short RF sputter etch of the bottom layer surface is sufficient to ensure a thermally and electronically conductive metal/metal interface in all materials we study. We analyze our results with a two-temperature model and bound the electronic interface conductance for the nine samples we study. Our findings have applications for thin-film synthesis and advance fundamental understanding of electronic thermal conductance at more » different types of interfaces between metals. « less
; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of Applied Physics
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. In standard molecular junctions, a molecular structure is placed between and connected to metal leads. Understanding how mechanical tuning in such molecular junctions can change heat conductance has interesting applications in nanoscale energy transport. In this work, we use nonequilibrium molecular dynamics simulations to address the effect of stretching on the phononic contribution to the heat conduction of molecular junctions consisting of single long-chain alkanes and various metal leads, such as Ag, Au, Cu, Ni, and Pt. The thermal conductance of such junctions is found to be much smaller than the intrinsic thermal conductance of the polymer and significantly depends on the nature of metal leads as expressed by the metal–molecule coupling and metal vibrational density of states. This behavior is expected and reflects the mismatch of phonon spectra at the metal molecule interfaces. As a function of stretching, we find a behavior similar to what was observed earlier [M. Dinpajooh and A. Nitzan, J. Chem. Phys. 153, 164903 (2020)] for pure polymeric structures. At relatively short electrode distances, where the polyethylene chains are compressed, it is found that the thermal conductances of the molecular junctions remain almost constant as one stretches the polymer chains. At critical electrode distances, themore »thermal conductances start to increase, reaching the values of the fully extended molecular junctions. Similar behaviors are observed for junctions in which several long-chain alkanes are sandwiched between various metal leads. These findings indicate that this behavior under stretching is an intrinsic property of the polymer chain and not significantly associated with the interfacial structures.

    « less
  2. The traditional von Neumann architecture limits the increase in computing efficiency and results in massive power consumption in modern computers due to the separation of storage and processing units. The novel neuromorphic computation system, an in-memory computing architecture with low power consumption, is aimed to break the bottleneck and meet the needs of the next generation of artificial intelligence (AI) systems. Thus, it is urgent to find a memory technology to implement the neuromorphic computing nanosystem. Nowadays, the silicon-based flash memory dominates non-volatile memory market, however, it is facing challenging issues to achieve the requirements of future data storage device development due to the drawbacks, such as scaling issue, relatively slow operation speed, and high voltage for program/erase operations. The emerging resistive random-access memory (RRAM) has prompted extensive research as its simple two-terminal structure, including top electrode (TE) layer, bottom electrode (BE) layer, and an intermediate resistive switching (RS) layer. It can utilize a temporary and reversible dielectric breakdown to cause the RS phenomenon between the high resistance state (HRS) and the low resistance state (LRS). RRAM is expected to outperform conventional memory device with the advantages, notably its low-voltage operation, short programming time, great cyclic stability, and good scalability.more »Among the materials for RS layer, indium gallium zinc oxide (IGZO) has shown attractive prospects in abundance and high atomic diffusion property of oxygen atoms, transparency. Additionally, its electrical properties can be easily modulated by controlling the stoichiometric ratio of indium and gallium as well as oxygen potential in the sputter gas. Moreover, since the IGZO can be applied to both the thin-film transistor (TFT) channel and RS layer, it has a great potential for fully integrated transparent electronics application. In this work, we proposed amorphous transparent IGZO-based RRAMs and investigated switching behaviors of the memory cells prepared with different top electrodes. First, ITO was choosing to serve as both TE and BE to achieve high transmittance. A multi-target magnetron sputtering system was employed to deposit all three layers (TE, RS, BE layers) on glass substrate. I-V characteristics were evaluated by a semiconductor parameter analyzer, and the bipolar RS feature of our RRAM devices was demonstrated by typical butterfly curves. The optical transmission analysis was carried out via a UV-Vis spectrometer and the average transmittance was around 80% out of entire devices in the visible-light wavelength range, implying high transparency. We adjusted the oxygen partial pressure during the sputtering of IGZO to optimize the property because the oxygen vacancy concentration governs the RS performance. Electrode selection is crucial and can impact the performance of the whole device. Thus, Cu TE was chosen for our second type of device because the diffusion of Cu ions can be beneficial for the formation of the conductive filament (CF). A ~5 nm SiO 2 barrier layer was employed between TE and RS layers to confine the diffusion of Cu into the RS layer. At the same time, this SiO 2 inserting layer can provide an additional interfacial series resistance in the device to lower the off current, consequently, improve the on/off ratio and whole performance. Finally, an oxygen affinity metal Ti was selected as the TE for our third type of device because the concentration of the oxygen atoms can be shifted towards the Ti electrode, which provides an oxygengettering activity near the Ti metal. This process may in turn lead to the formation of a sub-stoichiometric region in the neighboring oxide that is believed to be the origin of better performance. In conclusion, the transparent amorphous IGZO-based RRAMs were established. To tune the property of RS layer, the sputtering conditions of RS were varied. To investigate the influence of TE selections on switching performance of RRAMs, we integrated a set of TE materials, and a barrier layer on IGZO-based RRAM and compared the switch characteristics. Our encouraging results clearly demonstrate that IGZO is a promising material in RRAM applications and breaking the bottleneck of current memory technologies.« less
  3. Thermal stability of oxide–metal nanocomposites is important for designing practical devices for high temperature applications. Here, we study the thermal stability of the self-assembled ordered three-phase Au–BaTiO 3 –ZnO nanocomposite by both ex situ annealing under air and vacuum conditions, and by in situ heating in TEM in a vacuum. The study reveals that the variation of the annealing conditions greatly affects the resulting microstructure and the associated dominant diffusion mechanism. Specifically, Au nanoparticles show coarsening upon air annealing, while Au and Zn either form a solid solution, with Zn atomic percentage less than 10%, or undergo a reverse Vapor–Liquid–Solid (VLS) mechanism upon vacuum annealing. The distinct microstructures obtained also show different permittivity response in the visible and near-infrared region, while retaining their hyperbolic dispersion characteristics enabled by their highly anisotropic structures. Such in situ heating study in TEM provides critical information about microstructure evolution, growth mechanisms at the nanoscale, and thermal stability of the multi-phase nanocomposites for future electronic device applications.
  4. The discovery of oxide electronics is of increasing importance today as one of the most promising new technologies and manufacturing processes for a variety of electronic and optoelectronic applications such as next-generation displays, batteries, solar cells, and photodetectors. The high potential use seen in oxide electronics is due primarily to their high carrier mobilities and their ability to be fabricated at low temperatures. However, since the majority of oxide semiconductors are n-type oxides, current applications are limited to unipolar devices, eventually developing oxide-based bipolar devices such as p-n diodes and complementary metal-oxide semiconductors. We have contributed to wide range of oxide semiconductors and their electronics and optoelectronic device applications. Particularly, we have demonstrated n-type oxide-based thin film transistors (TFT), integrating In2O3-based n-type oxide semiconductors from binary cation materials to ternary cation species including InZnO, InGaZnO (IGZO), and InAlZnO. We have suggested channel/metallization contact strategies to achieve stable TFT performance, identified vacancy-based native defect doping mechanisms, suggested interfacial buffer layers to promote charge injection capability, and established the role of third cation species on the carrier generation and carrier transport. More recently, we have reported facile manufacturing of p-type SnOx through reactive magnetron sputtering from a Sn metal target. The fabricatedmore »p-SnOx was found to be devoid of metallic phase of Sn from x-ray photoelectron spectroscopy and demonstrated stable performance in a fully oxide based p-n heterojunction together with n-InGaZnO. The oxide-based p-n junctions exhibited a high rectification ratio greater than 103 at ±3 V, a low saturation current of ~2x10-10, and a small turn-on voltage of -0.5 V. With all the previous achievements and investigations about p-type oxide semiconductors, challenges remain for implementing p-type oxide realization. For the implementation of oxide-based p-n heterojunctions, the performance needs to be further enhanced. The current on/off ration may be limited, in our device structure, due to either high reverse saturation current (or current density) or non-ideal performance. In this study, two rational strategies are suggested to introduce an “intrinsic” layer, which is expected to reduce the reverse saturation current between p-SnOx and n-IGZO and hence increase the on/off ratio. The carrier density of n-IGZO is engineered in-situ during the sputtering process, by which compositionally homogeneous IGZO with significantly reduced carrier density is formed at the interface. Then, higher carrier density IGZO is formed continuously on the lower carrier density IGZO during the sputtering process without any exposure of the sample to the air. Alternatively, heterogeneous oxides of MgO and SiO2 are integrated into between p-SnOx and n-IGZO, by which the defects on the surface can be passivated. The interfacial properties are thoroughly investigated using transmission electron microscopy and atomic force microscopy. The I-V characteristics are compared between the set of devices integrated with two types of “intrinsic” layers. The current research results are expected to contribute to the development of p-type oxides and their industrial application manufacturing process that meets current processing requirements, such as mass production in p-type oxide semiconductors.« less
  5. We demonstrate in this work that expanded graphite (EG) can lead to a very large enhancement in thermal conductivity of polyetherimide−graphene and epoxy−graphene nanocomposites prepared via solvent casting technique. A k value of 6.6 W⋅m−1⋅K−1 is achieved for 10 wt% composition sample, representing an enhancement of ~2770% over pristine polyetherimide (k~0.23 W⋅m−1⋅K−1). This extraordinary enhancement in thermal conductivity is shown to be due to a network of continuous graphene sheets over long−length scales, resulting in low thermal contact resistance at bends/turns due to the graphene sheets being covalently bonded at such junctions. Solvent casting offers the advantage of preserving the porous structure of expanded graphite in the composite, resulting in the above highly thermally conductive interpenetrating network of graphene and polymer. Solvent casting also does not break down the expanded graphite particles due to minimal forces involved, allowing for efficient heat transfer over long−length scales, further enhancing overall composite thermal conductivity. Comparisons with a recently introduced effective medium model show a very high value of predicted particle–particle interfacial conductance, providing evidence for efficient interfacial thermal transport in expanded graphite composites. Field emission environmental scanning electron microscopy (FE−ESEM) is used to provide a detailed understanding of the interpenetrating graphene−polymer structure inmore »the expanded graphite composite. These results open up novel avenues for achieving high thermal conductivity polymer composites.« less