skip to main content


Title: Heat conduction in polymer chains: Effect of substrate on the thermal conductance

In standard molecular junctions, a molecular structure is placed between and connected to metal leads. Understanding how mechanical tuning in such molecular junctions can change heat conductance has interesting applications in nanoscale energy transport. In this work, we use nonequilibrium molecular dynamics simulations to address the effect of stretching on the phononic contribution to the heat conduction of molecular junctions consisting of single long-chain alkanes and various metal leads, such as Ag, Au, Cu, Ni, and Pt. The thermal conductance of such junctions is found to be much smaller than the intrinsic thermal conductance of the polymer and significantly depends on the nature of metal leads as expressed by the metal–molecule coupling and metal vibrational density of states. This behavior is expected and reflects the mismatch of phonon spectra at the metal molecule interfaces. As a function of stretching, we find a behavior similar to what was observed earlier [M. Dinpajooh and A. Nitzan, J. Chem. Phys. 153, 164903 (2020)] for pure polymeric structures. At relatively short electrode distances, where the polyethylene chains are compressed, it is found that the thermal conductances of the molecular junctions remain almost constant as one stretches the polymer chains. At critical electrode distances, the thermal conductances start to increase, reaching the values of the fully extended molecular junctions. Similar behaviors are observed for junctions in which several long-chain alkanes are sandwiched between various metal leads. These findings indicate that this behavior under stretching is an intrinsic property of the polymer chain and not significantly associated with the interfacial structures.

 
more » « less
Award ID(s):
1953701
NSF-PAR ID:
10365037
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
156
Issue:
14
ISSN:
0021-9606
Page Range / eLocation ID:
Article No. 144901
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For heat conduction along polymer chains, a decrease in the axial thermal conductivity often occurs when the polymer structure changes from one-dimensional (1D) to three-dimensional (3D). For example, a single extended aliphatic chain (e.g., polyethylene or poly(dimethylsiloxane)) usually has a higher axial thermal conductivity than its double-chain or crystal counterparts because coupling between chains induces strong interchain anharmonic scatterings. Intuitively, for chains with an aromatic backbone, the even stronger π–π stacking, once formed between chains, should enhance thermal transport across chains and suppress the thermal conductivity along the chains. However, we show that this trend is the opposite in poly(p-phenylene) (PPP), a typical chain with an aromatic backbone. Using molecular dynamics simulations, we found that the axial thermal conductivity of PPP chains shows an anomalous dimensionality dependence where the thermal conductivity of double-chain and 3D crystal structures is higher than that of a 1D single chain. We analyzed the probability distribution of dihedral angles and found that π–π stacking between phenyl rings restricts the free rotation of phenyl rings and forms a long-range order along the chain, thus enhancing thermal transport along the chain direction. Though possessing a stronger bonding strength and stabilizing the multiple-chain structure, π–π stacking does not lead to a higher interchain thermal conductance between phenyl rings compared with that between aliphatic chains. Our simulation results on the effects of π–π stacking provide insights to engineer thermal transport in polymers at the molecular level. 
    more » « less
  2. With the objective of understanding microscopic principles governing thermal energy flow in nanojunctions, we study phononic heat transport through metal-molecule-metal junctions using classical molecular dynamics (MD) simulations. Considering a single-molecule gold-alkanedithiol-gold junction, we first focus on aspects of method development and compare two techniques for calculating thermal conductance: (i) The Reverse Nonequilibrium MD (RNEMD) method, where heat is inputted and extracted at a constant rate from opposite metals. In this case, the thermal conductance is calculated from the nonequilibrium temperature profile that is created at the junction. (ii) The Approach-to-Equilibrium MD (AEMD) method, with the thermal conductance of the junction obtained from the equilibration dynamics of the metals. In both methods, simulations of alkane chains of a growing size display an approximate length-independence of the thermal conductance, with calculated values matching computational and experimental studies. The RNEMD and AEMD methods offer different insights, and we discuss their benefits and shortcomings. Assessing the potential application of molecular junctions as thermal diodes, alkane junctions are made spatially asymmetric by modifying their contact regions with the bulk, either by using distinct endgroups or by replacing one of the Au contacts with Ag. Anharmonicity is built into the system within the molecular force-field. We find that, while the temperature profile strongly varies (compared with the gold-alkanedithiol-gold junctions) due to these structural modifications, the thermal diode effect is inconsequential in these systems—unless one goes to very large thermal biases. This finding suggests that one should seek molecules with considerable internal anharmonic effects for developing nonlinear thermal devices. 
    more » « less
  3. Dipyridyl molecular junctions often show intriguing conductance switching behaviors with mechanical modulations, but the mechanisms are still not completely revealed. By applying the ab initio -based adiabatic simulation method, the configuration evolution and electron transport properties of dipyridyl molecular junctions in stretching and compressing processes are systematically investigated. The numerical results reveal that the dipyridyl molecular junctions tend to form specific contact configurations during formation processes. In small electrode gaps, the pyridyls almost vertically adsorb on the second Au layers of the tip electrodes by pushing the top Au atoms aside. These specific contact configurations result in stronger molecule–electrode couplings and larger electronic incident cross-sectional areas, which consequently lead to large breaking forces and high conductance. On further elongating the molecular junctions, the pyridyls shift to the top Au atoms of the tip electrodes. The additional scattering of the top Au atoms dramatically decreases the conductance and switches the molecular junctions to the lower conductive states. Perfect cyclical conductance switches are obtained as observed in the experiments by repeatedly stretching and compressing the molecular junctions. The O atom in the side-group tends to hinder the pyridyl from adsorbing on the second Au layer and further inhibits the conductance switch of the dipyridyl molecular junction. 
    more » « less
  4. Interfacial thermal transport is a critical physical process determining the performance of many material systems with small-scale features. Recently, self-assembled monolayers and polymer brushes have been widely used to engineer material interfaces presenting unprecedented properties. Here, we demonstrate that poly(vinyl alcohol) (PVA) monolayers with hierarchically arranged hydrogen bonds drastically enhance interfacial thermal conductance by a factor of 6.22 across the interface between graphene and poly(methyl methacrylate) (PMMA). The enhancement is tunable by varying the number of grafted chains and the density of hydrogen bonds in the unique hierarchical hydrogen bond network. The extraordinary enhancement results from a synergy of hydrogen bonds and other structural and thermal factors including molecular morphology, chain orientation, interfacial vibrational coupling and heat exchange. Two types of hydrogen bonds, i.e. PVA–PMMA hydrogen bonds and PVA–PVA hydrogen bonds, are analyzed and their effects on various structural and thermal properties are systematically investigated. These results are expected to provide new physical insights for interface engineering to achieve tunable thermal management and energy efficiency in a wide variety of systems involving polymers and biomaterials. 
    more » « less
  5. In this study, we investigated hierarchical microarchitecture formation of magnetic barium hexaferrite (BF) platelets inside the polydimethylsiloxane (PDMS) matrix using electric and magnetic field colloidal assembly technique. First, external fields were applied to the colloidal solution to form the microstructure before curing the composites. After microstructure formation the composites were cured to freeze the microstructure by the application of heat. We investigated two different cases in this study-(1) magnetic field processed composites and (2) multi-field processed composites which were processed under both magnetic and electric field. We observed that macro-chains formed due to the electric and magnetic field had much higher length compared to the macro-chains formed due to the just magnetic field. For both cases individuals BHF are found to be oriented in the direction of external field. The analysis of SEM microstructures using ImageJ and MATLAB showed that at least two different level of hierarchies are present in the microstructure for both cases which can be named as BHF stacks and micro-chains. From the microstructure analysis, we found that compared to just magnetic field processed composites, the orientation of individual particles, BHF stacks and micro-chains in relation to the external field were found to be higher for the multi-field processed composites. Magneto-electro-hydrodynamics modeling of the polymer-particulate mixture predicted similar behavior. Computational simulations were performed wherein particulates, subjected to both DEP forces and additional magnetic dipole interactions, were allowed to form quasi-equilibrium structures before locking in a final structure to represent curing. Results show that dielectrophoretic (DEP) force produced from the local non-uniform electric field facilitates the translation of the platelets towards formation of chain-like structure, while external magnetic field augmented the rotation of particles inside the chain-like structure. Analysis of the simulation of microstructures confirms that multiple level of hierarchies are present in the composites microstructure for both cases, while the case with both electric and magnetic fields produced longer chains. The understanding of the hierarchical microstructure formation using the multi-field processing technique will help in the future to fabricate more complex microarchitectures with resulting multi-material properties. 
    more » « less