skip to main content


Title: Additive manufacturing as a tool for high-throughput experimentation
Additive manufacturing (AM) is a disruptive technology with a unique capability in fabricating parts with complex geometry and fixing broken supply chains. However, many AM techniques are complicated with their processing features due to complex heating and cooling cycles with the melting of feedstock materials. Therefore, it is quite challenging to directly apply the materials design and processing optimization method used for conventional manufacturing to AM techniques. In this viewpoint paper, we discuss some of the ongoing efforts of high-throughput (HT) experimentation, which can be used for materials development and processing design. Particularly, we focus on the beam- and powder-based AM techniques since these methods have demonstrated success in HT experimentation. In addition, we propose new opportunities to apply AM techniques as the materials informatic tools contributing to materials genome.  more » « less
Award ID(s):
2047218
NSF-PAR ID:
10401933
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of Materials Informatics
Volume:
2
Issue:
3
ISSN:
2770-372X
Page Range / eLocation ID:
12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Significant progress into the development and use of stretchable sensors for structural health monitoring (SHM) has been made in the last several years. The fusion of stretchable, adaptable sensing materials with highly specialized additive manufacturing techniques allows for the development of highly adaptive, customizable, and easily accessible sensing solutions. However, a significant portion of these works explore SHM topics at a macro level, and with a reduced focus on implementation. As such, little application or experimentation into practical sensing elements, especially those at the micro scale, have followed the advances in sensing technology. In this work, we demonstrate the application of recent developments in stretchable electronics, alongside multiple advanced additive manufacturing processes, to develop a novel flexible microscale sensor. A complex sensor is designed and printed utilizing Digital Light Processing (DLP) to directly fabricate the structure. The printed sensor is then filled with a piezoresistive sensing element of either PEDOT:PSS or carbon-based PDMS (cPDMS), which provided strain readings via resistance change. After being filled with a sensing mixture, the sensor is shown to operate as desired under large deformations. Additionally, the sensor is shown to work effectively when embedded into a separate additively manufactured part. A flexible test coupon is manufactured using the DLP AM process, and a microsensor is embedded inside the coupon structure. This sensing systems is tested in both tension and bending. These results show the feasibility of implementing both modern day AM processes and into current structural health monitoring developments into practical applications. 
    more » « less
  2. null (Ed.)
    Emulating the unique combination of structural, compositional, and functional gradation in natural materials is exceptionally challenging. Many natural structures have proved too complex or expensive to imitate using traditional processing techniques despite recent advances. Recent innovations within the field of additive manufacturing (AM) or 3D Printing (3DP) have shown the ability to create structures that have variations in material composition, structure, and performance, providing a new design-for-manufacturing platform for the imitation of natural materials. AM or 3DP techniques are capable of manufacturing structures that have significantly improved properties and functionality over what could be traditionally-produced, giving manufacturers an edge in their ability to realize components for highly-specialized applications in different industries. To this end, the present work reviews fundamental advances in the use of naturally-inspired design enabled through 3DP / AM, how these techniques can be further exploited to reach new application areas and the challenges that lie ahead for widespread implementation. An example of how these techniques can be applied towards a total hip arthroplasty application is provided to spur further innovation in this area. 
    more » « less
  3. null (Ed.)
    The physical architecture of materials plays an integral role in determining material properties and functionality. While many processing techniques now exist for fabricating parts of any shape or size, a couple of techniques have emerged as facile and effective methods for creating unique structures: dealloying and additive manufacturing. This review discusses progress and challenges in the integration of dealloying techniques with the additive manufacturing (AM) platform to take advantage of the material processing capabilities established by each field. These methods are uniquely complementary: not only can we use AM to make nanoporous metals of complex, customized shapes—for instance, with applications in biomedical implants and microfluidics—but dealloying can occur simultaneously during AM to produce unique composite materials with nanoscale features of two interpenetrating phases. We discuss the experimental challenges of implementing these processing methods and how future efforts could be directed to address these difficulties. Our premise is that combining these synergistic techniques offers both new avenues for creating 3D functional materials and new functional materials that cannot be synthesized any other way. Dealloying and AM will continue to grow both independently and together as the materials community realizes the potential of this compelling combination. 
    more » « less
  4. Abstract

    Additive manufacturing, no longer reserved exclusively for prototyping components, can create parts with complex geometries and locally tailored properties. For example, multiple homogenous material sources can be used in different regions of a print or be mixed during printing to define properties locally. Additionally, heterogeneous composites provide an opportunity for another level of tuning properties through processing. For example, within particulate-filled polymer matrix composites before curing, the presence of an applied electric and/or magnetic fields can reorient filler particles and form hierarchical structures depending on the fields applied. Control of particle organization is important because effective material properties are highly dependent on the distribution of filler material within composites once cured. While previous work in homogenization and effective medium theories have determined properties based upon ideal analytic distributions of particle orientations and spatial location, this work expands upon these methods generating discrete distributions from quasi-Monte Carlo simulations of the electromagnetic processing event. Results of simulations provide predicted microarchitectures from which effective properties are determined via computational homogenization.

    These particle dynamics simulations account for dielectric and magnetic forces and torques in addition to hydrodynamic forces and hard particle separation. As such, the distributions generated are processing field dependent. The effective properties for a composite represented by this distribution are determined via computational homogenization using finite element analysis (FEA). This provides a path from constituents, through processing parameters to effective material properties. In this work, we use these simulations in conjunction with a multi-objective optimization scheme to resolve the relationships between processing conditions and effective properties, to inform field-assisted additive manufacturing processes.

    The constituent set providing the largest range of properties can be found using optimization techniques applied to the aforementioned simulation framework. This key information provides a recipe for tailoring properties for additive manufacturing design and production. For example, our simulation results show that stiffness for a 10% filler volume fraction can increase by 34% when aligned by an electric field as compared to a randomly distributed composite. The stiffness of this aligned sample is also 29% higher in the direction of the alignment than perpendicular to it, which only differs by 5% from the random case [1]. Understanding this behavior and accurately predicting composite properties is key to producing field processed composites and prints. Material property predictions compare favorably to effective medium theory and experimentation with trends in elastic and magnetic effective properties demonstrating the same anisotropic behavior as a result of applied field processing. This work will address the high computational expense of physics simulation based objective functions by using efficient algorithms and data structures. We will present an optimization framework using nested gradient searches for micro barium hexaferrite particles in a PDMS matrix, optimizing on composite magnetization to determine the volume fraction of filler that will provide the largest range of properties by varying the applied electric and magnetic fields.

     
    more » « less
  5. null (Ed.)
    316L stainless steel (SS) to Al12Si aluminum alloy structures were processed, tailoring the compositionally graded interface on a SS 316 substrate using a directed energy deposition (DED)-based additive manufacturing (AM) process. Applying such a compositionally graded transition on bimetallic materials, especially joining two dissimilar metals, could avoid the mechanical property mismatch. This study's objective was to understand the processing parameters that influence the properties of AM processed SS 316L to Al12Si bimetallic structures. Two different approaches fabricated these bimetallic structures. The results showed no visible defects on the as-fabricated samples using 4 layers of Al-rich mixed composition as the transition section. The microstructural characterization showed a unique morphology in each section. Both cooling rate and compositional variations caused microstructural variation. FeAl, Fe2Al5, and FeAl3 intermetallic phases were formed at the compositionally graded transition section. After stress relief heat-treatment of SS 316L/Al12Si bimetallic samples, diffused intermetallic phases were seen at the compositionally graded transition. At the interface, as processed, bimetallic structures had a microhardness value of 834.2 ± 107.1 HV0.1, which is a result of the FeAl3 phase at the compositionally graded transition area. After heat-treatment, the microhardness value reduced to 578.7 ± 154.1 HV0.1 due to more Fe dominated FexAly phase formation. The compression test results showed that the non-HT and HT SS 316L/Al12Si bimetallic structures had a similar maximum compressive strength of 299.4 ± 22.1 MPa and 270.1 ± 27.1 MPa, respectively. 
    more » « less