skip to main content

Title: Hyperactive nanobacteria with host-dependent traits pervade Omnitrophota
Abstract

Candidate bacterial phylum Omnitrophota has not been isolated and is poorly understood. We analysed 72 newly sequenced and 349 existing Omnitrophota genomes representing 6 classes and 276 species, along with Earth Microbiome Project data to evaluate habitat, metabolic traits and lifestyles. We applied fluorescence-activated cell sorting and differential size filtration, and showed that most Omnitrophota are ultra-small (~0.2 μm) cells that are found in water, sediments and soils. Omnitrophota genomes in 6 classes are reduced, but maintain major biosynthetic and energy conservation pathways, including acetogenesis (with or without the Wood-Ljungdahl pathway) and diverse respirations. At least 64% of Omnitrophota genomes encode gene clusters typical of bacterial symbionts, suggesting host-associated lifestyles. We repurposed quantitative stable-isotope probing data from soils dominated by andesite, basalt or granite weathering and identified 3 families with high isotope uptake consistent with obligate bacterial predators. We propose that most Omnitrophota inhabit various ecosystems as predators or parasites.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Award ID(s):
1826734 1441717
Publication Date:
NSF-PAR ID:
10401988
Journal Name:
Nature Microbiology
Volume:
8
Issue:
4
Page Range or eLocation-ID:
p. 727-744
ISSN:
2058-5276
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Chemosynthetic animal-microbe symbioses sustain hydrothermal vent communities in the global deep sea. In the Indo-Pacific Ocean, hydrothermal ecosystems are often dominated by gastropod species of the genus Alviniconcha, which live in association with chemosynthetic Gammaproteobacteria or Campylobacteria. While the symbiont genomes of most extant Alviniconcha species have been sequenced, no genome information is currently available for the gammaproteobacterial endosymbiont of Alviniconcha adamantis—a comparatively shallow living species that is thought to be the ancestor to all other present Alviniconcha lineages. Here, we report the first genome sequence for the symbiont of A. adamantis from the Chamorro Seamount at the Mariana Arc. Our phylogenomic analyses show that the A. adamantis symbiont is most closely related to Chromatiaceae endosymbionts of the hydrothermal vent snails Alviniconcha strummeri and Chrysomallon squamiferum, but represents a distinct bacterial species or possibly genus. Overall, the functional capacity of the A. adamantis symbiont appeared to be similar to other chemosynthetic Gammaproteobacteria, though several flagella and chemotaxis genes were detected, which are absent in other gammaproteobacterial Alviniconcha symbionts. These differences might suggest potential contrasts in symbiont transmission dynamics, host recognition, or nutrient transfer. Furthermore, an abundance of genes for ammonia transport and urea usage could indicate adaptations to themore »oligotrophic waters of the Mariana region, possibly via recycling of host- and environment-derived nitrogenous waste products. This genome assembly adds to the growing genomic resources for chemosynthetic bacteria from hydrothermal vents and will be valuable for future comparative genomic analyses assessing gene content evolution in relation to environment and symbiotic lifestyles.

    « less
  2. Abstract

    Secondary minerals (clays and metal oxides) are important components of the soil matrix. Clay minerals affect soil carbon persistence and cycling, and they also select for distinct microbial communities. Here we show that soil mineral assemblages—particularly short-range order minerals—affect both bacterial community composition and taxon-specific growth. Three soils with different parent material and presence of short-range order minerals were collected from ecosystems with similar vegetation and climate. These three soils were provided with18O-labeled water and incubated with or without artificial root exudates or pine needle litter. Quantitative stable isotope probing was used to determine taxon-specific growth. We found that the growth of bacteria varied among soils of different mineral assemblages but found the trend of growth suppression in the presence of short-range order minerals. Relative growth of bacteria declined with increasing concentration of short-range order minerals between 25–36% of taxa present in all soils. Carbon addition in the form of plant litter or root exudates weakly affected relative growth of taxa (p = 0.09) compared to the soil type (p < 0.01). However, both exudate and litter carbon stimulated growth for at least 34% of families in the soils with the most and least short-range order minerals. In the intermediate short-range order soil,more »fresh carbon reduced growth for more bacterial families than were stimulated. These results highlight how bacterial-mineral-substrate interactions are critical to soil organic carbon processing, and how growth variation in bacterial taxa in these interactions may contribute to soil carbon persistence and loss.

    « less
  3. Abstract

    Study of life history strategies may help predict the performance of microorganisms in nature by organizing the complexity of microbial communities into groups of organisms with similar strategies. Here, we tested the extent that one common application of life history theory, the copiotroph-oligotroph framework, could predict the relative population growth rate of bacterial taxa in soils from four different ecosystems. We measured the change of in situ relative growth rate to added glucose and ammonium using both18O–H2O and13C quantitative stable isotope probing to test whether bacterial taxa sorted into copiotrophic and oligotrophic groups. We saw considerable overlap in nutrient responses across most bacteria regardless of phyla, with many taxa growing slowly and few taxa that grew quickly. To define plausible life history boundaries based on in situ relative growth rates, we applied Gaussian mixture models to organisms’ joint18O–13C signatures and found that across experimental replicates, few taxa could consistently be assigned as copiotrophs, despite their potential for fast growth. When life history classifications were assigned based on average relative growth rate at varying taxonomic levels, finer resolutions (e.g., genus level) were significantly more effective in capturing changes in nutrient response than broad taxonomic resolution (e.g., phylum level). Our resultsmore »demonstrate the difficulty in generalizing bacterial life history strategies to broad lineages, and even to single organisms across a range of soils and experimental conditions. We conclude that there is a continued need for the direct measurement of microbial communities in soil to advance ecologically realistic frameworks.

    « less
  4. Lemon, Katherine P. (Ed.)
    ABSTRACT Predation structures food webs, influences energy flow, and alters rates and pathways of nutrient cycling through ecosystems, effects that are well documented for macroscopic predators. In the microbial world, predatory bacteria are common, yet little is known about their rates of growth and roles in energy flows through microbial food webs, in part because these are difficult to quantify. Here, we show that growth and carbon uptake were higher in predatory bacteria compared to nonpredatory bacteria, a finding across 15 sites, synthesizing 82 experiments and over 100,000 taxon-specific measurements of element flow into newly synthesized bacterial DNA. Obligate predatory bacteria grew 36% faster and assimilated carbon at rates 211% higher than nonpredatory bacteria. These differences were less pronounced for facultative predators (6% higher growth rates, 17% higher carbon assimilation rates), though high growth and carbon assimilation rates were observed for some facultative predators, such as members of the genera Lysobacter and Cytophaga , both capable of gliding motility and wolf-pack hunting behavior. Added carbon substrates disproportionately stimulated growth of obligate predators, with responses 63% higher than those of nonpredators for the Bdellovibrionales and 81% higher for the Vampirovibrionales , whereas responses of facultative predators to substrate addition were nomore »different from those of nonpredators. This finding supports the ecological theory that higher productivity increases predator control of lower trophic levels. These findings also indicate that the functional significance of bacterial predators increases with energy flow and that predatory bacteria influence element flow through microbial food webs. IMPORTANCE The word “predator” may conjure images of leopards killing and eating impala on the African savannah or of great white sharks attacking elephant seals off the coast of California. But microorganisms are also predators, including bacteria that kill and eat other bacteria. While predatory bacteria have been found in many environments, it has been challenging to document their importance in nature. This study quantified the growth of predatory and nonpredatory bacteria in soils (and one stream) by tracking isotopically labeled substrates into newly synthesized DNA. Predatory bacteria were more active than nonpredators, and obligate predators, such as Bdellovibrionales and Vampirovibrionales , increased in growth rate in response to added substrates at the base of the food chain, strong evidence of trophic control. This work provides quantitative measures of predator activity and suggests that predatory bacteria—along with protists, nematodes, and phages—are active and important in microbial food webs.« less
  5. ABSTRACT While most bacterial and archaeal taxa living in surface soils remain undescribed, this problem is exacerbated in deeper soils, owing to the unique oligotrophic conditions found in the subsurface. Additionally, previous studies of soil microbiomes have focused almost exclusively on surface soils, even though the microbes living in deeper soils also play critical roles in a wide range of biogeochemical processes. We examined soils collected from 20 distinct profiles across the United States to characterize the bacterial and archaeal communities that live in subsurface soils and to determine whether there are consistent changes in soil microbial communities with depth across a wide range of soil and environmental conditions. We found that bacterial and archaeal diversity generally decreased with depth, as did the degree of similarity of microbial communities to those found in surface horizons. We observed five phyla that consistently increased in relative abundance with depth across our soil profiles: Chloroflexi , Nitrospirae , Euryarchaeota , and candidate phyla GAL15 and Dormibacteraeota (formerly AD3). Leveraging the unusually high abundance of Dormibacteraeota at depth, we assembled genomes representative of this candidate phylum and identified traits that are likely to be beneficial in low-nutrient environments, including the synthesis and storage ofmore »carbohydrates, the potential to use carbon monoxide (CO) as a supplemental energy source, and the ability to form spores. Together these attributes likely allow members of the candidate phylum Dormibacteraeota to flourish in deeper soils and provide insight into the survival and growth strategies employed by the microbes that thrive in oligotrophic soil environments. IMPORTANCE Soil profiles are rarely homogeneous. Resource availability and microbial abundances typically decrease with soil depth, but microbes found in deeper horizons are still important components of terrestrial ecosystems. By studying 20 soil profiles across the United States, we documented consistent changes in soil bacterial and archaeal communities with depth. Deeper soils harbored communities distinct from those of the more commonly studied surface horizons. Most notably, we found that the candidate phylum Dormibacteraeota (formerly AD3) was often dominant in subsurface soils, and we used genomes from uncultivated members of this group to identify why these taxa are able to thrive in such resource-limited environments. Simply digging deeper into soil can reveal a surprising number of novel microbes with unique adaptations to oligotrophic subsurface conditions.« less