Abstract Biogenic volatile organic compounds (bVOCs) play important roles in ecological interactions and Earth system processes, yet the biological and physical processes that drive soil bVOC exchanges remain poorly understood. In temperate forests, nearly all tree species associate with arbuscular mycorrhizal (AM) or ectomycorrhizal (ECM) fungi. Given well‐established differences in soil biogeochemistry between AM‐dominated and ECM‐dominated stands, we hypothesized that bVOC exchanges with the atmosphere would differ between soils from the two stand types. We measured bVOC fluxes at the soil‐atmosphere interface in plots dominated by AM‐ and ECM‐associated trees in a deciduous forest in south‐central Indiana, USA during the early and late vegetative growing season. Soils in both AM‐ and ECM‐dominated plots were a net bVOC sink following leaf‐out and were a greater bVOC sink or smaller source at warmer soil temperatures (Ts). The flux of different bVOCs from ECM plots was often related to soil water content in addition toTs. Methanol dominated total bVOC fluxes, and ECM soils demonstrated greater uptake relative to AM‐dominated plots, on the order of 170 nmol m−2 hr−1during the early growing season. Our results demonstrate the importance of soil dynamics characterized by mycorrhizal associations to bVOC dynamics in forested ecosystems and emphasize the need to study bidirectional soil bVOC uptake and emission processes.
more »
« less
This content will become publicly available on April 1, 2026
Mycorrhiza—Saprotroph Interactions and Carbon Cycling in the Rhizosphere
ABSTRACT Labile carbon (C) inputs in soils are expected to increase in the future due to global change drivers such as elevated atmospheric CO2concentrations or warming and potential increases in plant primary productivity. However, the role of mycorrhizal association in modulating microbial activity and soil organic matter (SOM) biogeochemistry responses to increasing below‐ground C inputs remains unclear. We employed18O–H2O quantitative stable isotope probing to investigate the effects of synthetic root exudate addition (0, 250, 500, and 1000 μg C g soil−1) on bacterial growth traits and SOM biogeochemistry in rhizosphere soils of trees associated with arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi. Soil respiration increased proportionally to the amount of exudate addition in both AM and ECM soils. However, microbial biomass C (MBC) responses differed, increasing in AM and decreasing in ECM soils. In AM soils, exudate addition increased taxon‐specific and community‐wide relative growth rates of bacteria, leading to enhanced biomass production. Conversely, in ECM soils, relative growth rates were less responsive to exudate addition, and estimates of MBC mortality increased with increasing exudate addition. In the AM soils, aggregated bacterial growth traits were predictive of soil respiration, but this relationship was not observed in ECM soils, perhaps due to substantial MBC mortality. These findings highlight the distinct responses of bacterial communities in AM and ECM rhizosphere soils to exudate addition. Considering that microbial products contribute to the formation of stable soil organic carbon (SOC) pools, future increases in labile exudate release in response to global change may consequently lead to greater SOC gains in AM soils compared to ECM soils.
more »
« less
- Award ID(s):
- 2114570
- PAR ID:
- 10596734
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Change Biology
- Volume:
- 31
- Issue:
- 4
- ISSN:
- 1354-1013
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Plant–mycorrhizal interactions mediate plant nitrogen (N) limitation and can inform model projections of the duration and strength of the effect of increasing CO2on plant growth. We present dendrochronological evidence of a positive, but context-dependent fertilization response ofQuercus rubra L. to increasing ambient CO2(iCO2) along a natural soil nutrient gradient in a mature temperate forest. We investigated this heterogeneous response by linking metagenomic measurements of ectomycorrhizal (ECM) fungal N-foraging traits and dendrochronological models of plant uptake of inorganic N and N bound in soil organic matter (N-SOM). N-SOM putatively enhanced tree growth under conditions of low inorganic N availability, soil conditions where ECM fungal communities possessed greater genomic potential to decay SOM and obtain N-SOM. These trees were fertilized by 38 years of iCO2. In contrast, trees occupying inorganic N rich soils hosted ECM fungal communities with reduced SOM decay capacity and exhibited neutral growth responses to iCO2. This study elucidates how the distribution of N-foraging traits among ECM fungal communities govern tree access to N-SOM and subsequent growth responses to iCO2.more » « less
-
Druzhinina, Irina S. (Ed.)ABSTRACT Trees associating with different mycorrhizas often differ in their effects on litter decomposition, nutrient cycling, soil organic matter (SOM) dynamics, and plant-soil interactions. For example, due to differences between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) tree leaf and root traits, ECM-associated soil has lower rates of C and N cycling and lower N availability than AM-associated soil. These observations suggest that many groups of nonmycorrhizal fungi should be affected by the mycorrhizal associations of dominant trees through controls on nutrient availability. To test this overarching hypothesis, we explored the influence of predominant forest mycorrhizal type and mineral N availability on soil fungal communities using next-generation amplicon sequencing. Soils from four temperate hardwood forests in southern Indiana, United States, were studied; three forests formed a natural gradient of mycorrhizal dominance (100% AM tree basal area to 100% ECM basal area), while the fourth forest contained a factorial experiment testing long-term N addition in both dominant mycorrhizal types. We found that overall fungal diversity, as well as the diversity and relative abundance of plant pathogenic and saprotrophic fungi, increased with greater AM tree dominance. Additionally, tree community mycorrhizal associations explained more variation in fungal community composition than abiotic variables, including soil depth, SOM content, nitrification rate, and mineral N availability. Our findings suggest that tree mycorrhizal associations may be good predictors of the diversity, composition, and functional potential of soil fungal communities in temperate hardwood forests. These observations help explain differing biogeochemistry and community dynamics found in forest stands dominated by differing mycorrhizal types. IMPORTANCE Our work explores how differing mycorrhizal associations of temperate hardwood trees (i.e., arbuscular [AM] versus ectomycorrhizal [ECM] associations) affect soil fungal communities by altering the diversity and relative abundance of saprotrophic and plant-pathogenic fungi along natural gradients of mycorrhizal dominance. Because temperate hardwood forests are predicted to become more AM dominant with climate change, studies examining soil communities along mycorrhizal gradients are necessary to understand how these global changes may alter future soil fungal communities and their functional potential. Ours, along with other recent studies, identify possible global trends in the frequency of specific fungal functional groups responsible for nutrient cycling and plant-soil interactions as they relate to mycorrhizal associations.more » « less
-
Abstract Nitrogen (N) deposition increases soil carbon (C) storage by reducing microbial activity. These effects vary in soil beneath trees that associate with arbuscular (AM) and ectomycorrhizal (ECM) fungi. Variation in carbon C and N uptake traits among microbes may explain differences in soil nutrient cycling between mycorrhizal associations in response to high N loads, a mechanism not previously examined due to methodological limitations. Here, we used quantitative Stable Isotope Probing (qSIP) to measure bacterial C and N assimilation rates from an added organic compound, which we conceptualize as functional traits. As such, we applied a trait‐based approach to explore whether variation in assimilation rates of bacterial taxa can inform shifts in soil function under chronic N deposition. We show taxon‐specific and community‐wide declines of bacterial C and N uptake under chronic N deposition in both AM and ECM soils. N deposition‐induced reductions in microbial activity were mirrored by declines in soil organic matter mineralization rates in AM but not ECM soils. Our findings suggest C and N uptake traits of bacterial communities can predict C cycling feedbacks to N deposition in AM soils, but additional data, for instance on the traits of fungi, may be needed to connect microbial traits with soil C and N cycling in ECM systems. Our study also highlights the potential of employing qSIP in conjunction with trait‐based analytical approaches to inform how ecological processes of microbial communities influence soil functioning.more » « less
-
Precipitation changes altered soil heterotrophic respiration, but the underlying microbial mechanisms remain rarely studied. This study conducted three-year switchgrass (Panicum virgatum L.) mesocosm experiment to investigate soil heterotrophic respiratory responses to altered precipitation. Five treatments were considered, including ambient precipitation (P0), two wet treatments (P+33 and P+50: 33% and 50% enhancement relative to P0), and two drought treatments (P-33 and P-50: 33% and 50% reduction relative to P0). The plant’s aboveground biomass (AGB), soil organic carbon (SOC), total nitrogen (TN), microbial biomass carbon (MBC), heterotrophic respiration (Rs), biomass-specific respiration (Rss: respiration per unit of microbial biomass as a reciprocal index of microbial growth efficiency), and extracellular enzymes activities (EEAs) were quantified in soil samples (0–15 cm). Despite significantly different soil moisture contents among treatments, results showed no impact of precipitation treatments on SOC and TN. Increasing precipitation had no effect, but decreasing precipitation significantly reduced plant AGB. Relative to P0, P+33 significantly increased Rs by more than 3-fold and caused no changes in MBC, leading to significantly higher Rss (P < 0.05). P+33 also significantly increased hydrolytic enzyme activities associated with labile carbon acquisition (Cacq) by 115%. The only significant effect of drought treatments was the decreased β-D-cellobiosidase (CBH) and peroxidase (PEO) under P-33. Nonparametric analyses corroborated the strong influences of moisture and CBH on the enhanced precipitation, which stimulated soil respiratory carbon loss, likely driven by both elevated hydrolase activities and reduced microbial growth efficiency. However, the less sensitive drought effects suggested potential microbial tolerance to water deficiency despite depressed plant growth. This study informs the likely decoupled impacts of microbes and plants on soil heterotrophic respiration under changing precipitation in the switchgrass mesocosm experiment.more » « less
An official website of the United States government
