skip to main content


Title: The bright supernova 1996cr in the circinus galaxy imaged with VLBI: shell structure with complex evolution
ABSTRACT

We present broad-band radio flux-density measurements supernova (SN) 1996cr, made with MeerKAT, ATCA, and ALMA, and images made from very long baseline interferometry (VLBI) observations with the Australian Long Baseline Array. The spectral energy distribution of SN 1996cr in 2020, at age t ∼8700 d, is a power-law, with flux density, S ∝ ν−0.588 ± 0.011 between 1 and 34 GHz, but may steepen at >35 GHz. The spectrum has flattened since t = 5370 d (2010). Also since t = 5370 d, the flux density has declined rapidly, with $S_{\rm 9 \, GHz} \propto t^{-2.9}$. The VLBI image at t = 8859 d shows an approximately circular structure with a central minimum reminiscent of an optically-thin spherical shell of emission. For a distance of 3.7 Mpc, the average outer radius of the radio emission at t = 8859 d was (5.1 ± 0.3) × 1017 cm, and SN 1996cr has been expanding with a velocity of 4650 ± 1060 km s−1 between t = 4307 and 8859 d. It must have undergone considerable deceleration before t = 4307 d. Deviations from a circular shell structure in the image suggest a range of velocities up to ∼7000 km s−1, and hint at the presence of a ring- or equatorial-belt-like structure rather than a complete spherical shell.

 
more » « less
Award ID(s):
1911061
NSF-PAR ID:
10402010
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
521
Issue:
2
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 2239-2247
Size(s):
["p. 2239-2247"]
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We report on new Very Long Baseline Interferometry radio measurements of supernova (SN) 2014C in the spiral galaxy NGC 7331, made with the European VLBI Network ∼5 yr after the explosion, as well as on flux density measurements made with the Jansky Very Large Array (VLA). SN 2014C was an unusual SN, initially of Type Ib, but over the course of ∼1 yr, it developed strong H α lines, implying the onset of strong interaction with some H-rich circumstellar medium (CSM). The expanding shock-front interacted with a dense shell of circumstellar material during the first year, but has now emerged from the dense shell and is expanding into the lower density CSM beyond. Our new VLBI observations show a relatively clear shell structure and continued expansion with some deceleration, with a suggestion that the deceleration is increasing at the latest times. Our multifrequency VLA observations show a relatively flat power-law spectrum with Sν ∝ ν−0.56 ± 0.03, and show no decline in the radio luminosity since t ∼ 1 yr. 
    more » « less
  2. null (Ed.)
    ABSTRACT We report on Very Long Baseline Interferometry (VLBI) observations of the fast and blue optical transient (FBOT), AT 2018cow. At ∼62 Mpc, AT 2018cow is the first relatively nearby FBOT. The nature of AT 2018cow is not clear, although various hypotheses from a tidal disruption event to different kinds of supernovae have been suggested. It had a very fast rise time (3.5 d) and an almost featureless blue spectrum, although high photospheric velocities (40 000 km s−1) were suggested early on. The X-ray luminosity was very high, ∼1.4 × 1043 erg s−1, larger than those of ordinary supernovae (SNe), and more consistent with those of SNe associated with gamma-ray bursts. Variable hard X-ray emission hints at a long-lived ‘central engine.’ It was also fairly radio luminous, with a peak 8.4-GHz spectral luminosity of ∼4 × 1028 erg s−1 Hz−1, allowing us to make VLBI observations at ages between 22 and 287 d. We do not resolve AT 2018cow. Assuming a circularly symmetric source, our observations constrain the average apparent expansion velocity to be ${\lt}0.49\, c$ by t = 98 d (3σ limit). We also constrain the proper motion of AT 2018cow to be ${\lt}0.51\, c$. Since the radio emission generally traces the fastest ejecta, our observations make the presence of a long-lived relativistic jet with a lifetime of more than 1 month very unlikely. 
    more » « less
  3. ABSTRACT

    NGC 4395 is a dwarf galaxy at a distance of about 4.3 Mpc (scale: ∼0.021 pc mas−1). It hosts an intermediate-mass black hole (IMBH) with a mass between ∼104 and ∼105 solar masses. The early radio observations of NGC 4395 with the very long baseline interferometry (VLBI) network, High Sensitivity Array (HSA), at 1.4 GHz in 2005 showed that its nucleus has a sub-mJy outflow-like feature (E) extending over 15 mas. To probe the possibility of the feature E as a continuous jet with a base physically coupled with the accretion disc, we performed deep VLBI observations with the European VLBI Network (EVN) at 5 GHz, and analysed the archival data obtained with the HSA at 1.4 GHz in 2008, NSF’s Karl G. Jansky Very Large Array (VLA) at 12–18 GHz and the Atacama Large Millimetre/submillimetre Array (ALMA) at 237 GHz. The feature E displays more diffuse structure in the HSA image of 2008 and has no compact substructure detected in the EVN image. Together with the optically thin steep spectrum and the extremely large angular offset (about 220 mas) from the accurate optical Gaia position, we explain the feature E as nuclear shocks likely formed by the IMBH’s episodic ejection or wide-angle outflow. The VLA and ALMA observations find a sub-mJy pc-scale diffuse feature, possibly tracing a thermal free–free emission region near the IMBH. There is no detection of a jet base at the IMBH position in the VLBI maps. The non-detections give an extremely low luminosity of ≤4.7 × 1033 erg s−1 at 5 GHz and indicate no evidence of a disc-jet coupling on sub-pc scales.

     
    more » « less
  4. Abstract

    SN 2014C was originally classified as a Type Ib supernova, but at phaseϕ= 127 days, post-explosion strong Hαemission was observed. SN 2014C has since been observed in radio, infrared, optical and X-ray bands. Here we present new optical spectroscopic and photometric data spanningϕ= 947–2494 days post-explosion. We address the evolution of the broadened Hαemission line, as well as broad [Oiii] emission and other lines. We also conduct a parallel analysis of all publicly available multiwavelength data. From our spectra, we find a nearly constant HαFWHM velocity width of ∼2000 km s−1that is significantly lower than that of other broadened atomic transitions (∼3000–7000 km s−1) present in our spectra ([Oi]λ6300; [Oiii]λλ4959, 5007; Heiλ7065; [Caii]λλ7291, 7324). The late radio data demand a fast forward shock (∼10,000 km s−1atϕ= 1700 days) in rarified matter that contrasts with the modest velocity of the Hα. We propose that the infrared flux originates from a toroidal-like structure of hydrogen surrounding the progenitor system, while later emission at other wavelengths (radio, X-ray) likely originates predominantly from the reverse shock in the ejecta and the forward shock in the quasi-spherical progenitor He-wind. We propose that the Hαemission arises in the boundary layer between the ejecta and torus. We also consider the possible roles of a pulsar and a binary companion.

     
    more » « less
  5. Abstract

    Sagittarius A* (Sgr A*), the Galactic Center supermassive black hole (SMBH), is one of the best targets in which to resolve the innermost region of an SMBH with very long baseline interferometry (VLBI). In this study, we have carried out observations toward Sgr A* at 1.349 cm (22.223 GHz) and 6.950 mm (43.135 GHz) with the East Asian VLBI Network, as a part of the multiwavelength campaign of the Event Horizon Telescope (EHT) in 2017 April. To mitigate scattering effects, the physically motivated scattering kernel model from Psaltis et al. (2018) and the scattering parameters from Johnson et al. (2018) have been applied. As a result, a single, symmetric Gaussian model well describes the intrinsic structure of Sgr A* at both wavelengths. From closure amplitudes, the major-axis sizes are ∼704 ± 102μas (axial ratio ∼1.190.19+0.24) and ∼300 ± 25μas (axial ratio ∼1.28 ± 0.2) at 1.349 cm and 6.95 mm, respectively. Together with a quasi-simultaneous observation at 3.5 mm (86 GHz) by Issaoun et al. (2019), we show that the intrinsic size scales with observing wavelength as a power law, with an index ∼1.2 ± 0.2. Our results also provide estimates of the size and compact flux density at 1.3 mm, which can be incorporated into the analysis of the EHT observations. In terms of the origin of radio emission, we have compared the intrinsic structures with the accretion flow scenario, especially the radiatively inefficient accretion flow based on the Keplerian shell model. With this, we show that a nonthermal electron population is necessary to reproduce the source sizes.

     
    more » « less