skip to main content


Title: The efficacy of selection may increase or decrease with selfing depending upon the recombination environment
Abstract

Much theory has focused on how a population’s selfing rate affects the ability of natural selection to remove deleterious mutations from a population. However, most such theory has focused on mutations of a given dominance and fitness effect in isolation. It remains unclear how selfing affects the purging of deleterious mutations in a genome-wide context where mutations with different selection and dominance coefficients co-segregate. Here, we use individual-based forward simulations and analytical models to investigate how mutation, selection and recombination interact with selfing rate to shape genome-wide patterns of mutation accumulation and fitness. In addition to recovering previously described results for how selfing affects the efficacy of selection against mutations of a given dominance class, we find that the interaction of purifying selection against mutations of different dominance classes changes with selfing and recombination rates. In particular, when recombination is low and recessive deleterious mutations are common, outcrossing populations transition from purifying selection to pseudo-overdominance, dramatically reducing the efficacy of selection. At these parameter combinations, the efficacy of selection remains low until populations hit a threshold selfing rate, above which it increases. In contrast, selection is more effective in outcrossing than (partial) selfing populations when recombination rates are moderate to high and recessive deleterious mutations are rare.

 
more » « less
Award ID(s):
1754246
NSF-PAR ID:
10402109
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Evolution
Volume:
77
Issue:
2
ISSN:
0014-3820
Page Range / eLocation ID:
p. 394-408
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We provide a partial test of the mitonuclear sex hypothesis with the first controlled study of how male frequencies and rates of outcrossing evolve in response to mitonuclear mismatch by allowing replicate lineages of C. elegans nematodes containing either mitochondrial or nuclear mutations of electron transport chain (ETC) genes to evolve under three sexual systems: facultatively outcrossing (wildtype), obligately selfing, and obligately outcrossing. Among facultatively outcrossing lines, we found evolution of increased male frequency in at least one replicate line of all four ETC mutant backgrounds tested—nuclear isp-1 , mitochondrial cox-1 and ctb-1 , and an isp-1 IV; ctb-1M mitonuclear double mutant—and confirmed for a single line set ( cox-1 ) that increased male frequency also resulted in successful outcrossing. We previously found the same result for lines evolved from another nuclear ETC mutant, gas-1 . For several lines in the current experiment, however, male frequency declined to wildtype levels (near 0%) in later generations. Male frequency did not change in lines evolved from a wildtype control strain. Additional phenotypic assays of lines evolved from the mitochondrial cox-1 mutant indicated that evolution of high male frequency was accompanied by evolution of increased male sperm size and mating success with tester females, but that it did not translate into increased mating success with coevolved hermaphrodites. Rather, hermaphrodites’ self-crossed reproductive fitness increased, consistent with sexually antagonistic coevolution. In accordance with evolutionary theory, males and sexual outcrossing may be most beneficial to populations evolving from a state of low ancestral fitness ( gas-1 , as previously reported) and less beneficial or deleterious to those evolving from a state of higher ancestral fitness ( cox-1 ). In support of this idea, the obligately outcrossing fog-2 V; cox-1 M lines exhibited no fitness evolution compared to their ancestor, while facultatively outcrossing lines showed slight upward evolution of fitness, and all but one of the obligately selfing xol-1 X; cox-1 M lines evolved substantially increased fitness—even beyond wildtype levels. This work provides a foundation to directly test the effect of reproductive mode on the evolutionary dynamics of mitonuclear genomes, as well as whether compensatory mutations (nuclear or mitochondrial) can rescue populations from mitochondrial dysfunction. 
    more » « less
  2. Abstract

    Inbred populations often suffer from increased mutational load and reduced fitness due to lower efficacy of purifying selection in groups with small effective population sizes. Genetic rescue (GR) is a conservation tool that is studied and deployed with the aim of increasing the fitness of such inbred populations by assisted migration of individuals from closely related outbred populations. The success of GR depends on several factors—such as their demographic history and distribution of dominance effects of mutations—that may vary across populations. While we understand the impact of these factors on the dynamics of GR, their impact on local adaptations remains unclear. To this end, we conduct a population genetics simulation study to evaluate the impact of trait complexity (Mendelian vs. polygenic), dominance effects, and demographic history on the efficacy of GR. We find that the impact on local adaptations depends highly on the mutational load at the time of GR, which is in turn shaped dynamically by interactions between demographic history and dominance effects of deleterious variation. Over time local adaptations are generally restored post-GR, though in the short term they are often compromised in the process of purging deleterious variation. We also show that while local adaptations are almost always fully restored, the degree to which ancestral genetic variation affecting the trait is replaced by donor variation can vary drastically and is especially high for complex traits. Our results provide insights on the impact of GR on trait evolution and considerations for the practical implementation of GR.

     
    more » « less
  3. Purugganan, Michael (Ed.)
    Abstract The deleterious effects of inbreeding have been of extreme importance to evolutionary biology, but it has been difficult to characterize the complex interactions between genetic constraints and selection that lead to fitness loss and recovery after inbreeding. Haploid organisms and selfing organisms like the nematode Caenorhabditis elegans are capable of rapid recovery from the fixation of novel deleterious mutation; however, the potential for recovery and genomic consequences of inbreeding in diploid, outcrossing organisms are not well understood. We sought to answer two questions: 1) Can a diploid, outcrossing population recover from inbreeding via standing genetic variation and new mutation? and 2) How does allelic diversity change during recovery? We inbred C. remanei, an outcrossing relative of C. elegans, through brother-sister mating for 30 generations followed by recovery at large population size. Inbreeding reduced fitness but, surprisingly, recovery from inbreeding at large populations sizes generated only very moderate fitness recovery after 300 generations. We found that 65% of ancestral single nucleotide polymorphisms (SNPs) were fixed in the inbred population, far fewer than the theoretical expectation of ∼99%. Under recovery, 36 SNPs across 30 genes involved in alimentary, muscular, nervous, and reproductive systems changed reproducibly across replicates, indicating that strong selection for fitness recovery does exist. Our results indicate that recovery from inbreeding depression via standing genetic variation and mutation is likely to be constrained by the large number of segregating deleterious variants present in natural populations, limiting the capacity for recovery of small populations. 
    more » « less
  4. Abstract

    The detection of selective sweeps from population genomic data often relies on the premise that the beneficial mutations in question have fixed very near the sampling time. As it has been previously shown that the power to detect a selective sweep is strongly dependent on the time since fixation as well as the strength of selection, it is naturally the case that strong, recent sweeps leave the strongest signatures. However, the biological reality is that beneficial mutations enter populations at a rate, one that partially determines the mean wait time between sweep events and hence their age distribution. An important question thus remains about the power to detect recurrent selective sweeps when they are modeled by a realistic mutation rate and as part of a realistic distribution of fitness effects, as opposed to a single, recent, isolated event on a purely neutral background as is more commonly modeled. Here we use forward-in-time simulations to study the performance of commonly used sweep statistics, within the context of more realistic evolutionary baseline models incorporating purifying and background selection, population size change, and mutation and recombination rate heterogeneity. Results demonstrate the important interplay of these processes, necessitating caution when interpreting selection scans; specifically, false-positive rates are in excess of true-positive across much of the evaluated parameter space, and selective sweeps are often undetectable unless the strength of selection is exceptionally strong.

     
    more » « less
  5. The influence of genetic drift on population dynamics during Pleistocene glacial cycles is well understood, but the role of selection in shaping patterns of genomic variation during these events is less explored. We resequenced whole genomes to investigate how demography and natural selection interact to generate the genomic landscapes of Downy and Hairy Woodpecker, species codistributed in previously glaciated North America. First, we explored the spatial and temporal patterns of genomic diversity produced by neutral evolution. Next, we tested (i) whether levels of nucleotide diversity along the genome are correlated with intrinsic genomic properties, such as recombination rate and gene density, and (ii) whether different demographic trajectories impacted the efficacy of selection. Our results revealed cycles of bottleneck and expansion, and genetic structure associated with glacial refugia. Nucleotide diversity varied widely along the genome, but this variation was highly correlated between the species, suggesting the presence of conserved genomic features. In both taxa, nucleotide diversity was positively correlated with recombination rate and negatively correlated with gene density, suggesting that linked selection played a role in reducing diversity. Despite strong fluctuations in effective population size, the maintenance of relatively large populations during glaciations may have facilitated selection. Under these conditions, we found evidence that the individual demographic trajectory of populations modulated linked selection, with purifying selection being more efficient in removing deleterious alleles in large populations. These results highlight that while genome-wide variation reflects the expected signature of demographic change during climatic perturbations, the interaction of multiple processes produces a predictable and highly heterogeneous genomic landscape. 
    more » « less