Abstract Morphological processes often induce meter‐scale elevation changes. When a volcano erupts, tracking such processes provides insights into the style and evolution of eruptive activity and related hazards. Compared to optical remote‐sensing products, synthetic aperture radar (SAR) observes surface change during inclement weather and at night. Differential SAR interferometry estimates phase change between SAR acquisitions and is commonly applied to quantify deformation. However, large deformation or other coherence loss can limit its use. We develop a new approach applicable when repeated digital elevation models (DEMs) cannot be otherwise retrieved. Assuming an isotropic radar cross‐section, we estimate meter‐scale vertical morphological change directly from SAR amplitude images via an optimization method that utilizes a high‐quality DEM. We verify our implementation through simulation of a collapse feature that we modulate onto topography. We simulate radar effects and recover the simulated collapse. To validate our method, we estimate elevation changes from TerraSAR‐X stripmap images for the 2011–2012 eruption of Mount Cleveland. Our results reproduce those from two previous studies; one that used the same dataset, and another based on thermal satellite data. By applying this method to the 2019–2020 eruption of Shishaldin Volcano, Alaska, we generate elevation change time series from dozens of co‐registered TerraSAR‐X high‐resolution spotlight images. Our results quantify previously unresolved cone growth in November 2019, collapses associated with explosions in December–January, and further changes in crater elevations into spring 2020. This method can be used to track meter‐scale morphology changes for ongoing eruptions with low latency as SAR imagery becomes available. 
                        more » 
                        « less   
                    
                            
                            Analyzing Changing Thermal Features at Puyehue-Cordon Caulle, Chile Using Satellite, Field, and Drone Observations
                        
                    
    
            The Puyehue-Cordon Caulle (PCC) volcanic complex, Chile, hosts numerous thermal features, including a ~0.8 km3 laccolith formed during the 2011-2012 eruption. Laccoliths are large intrusions that form between country rock layers that have been rarely observed during the process of formation. We use medium-spatial resolution (90 m/pixel) satellite data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), to identify changes at the laccolith and other thermal features within PCC between 2000 and 2022. Previous studies have analyzed thermal behavior using MODIS images, which have low spatial resolution but high temporal resolution, and Landsat images, which have medium spatial resolution, but were only examined during the eruption (2011-2012). Prior research using ASTER data have only recorded the maximum temperature at PCC, while this study analyzes all of the individual thermal features and records both temperature and area for each feature identified in all 41 cloud-free, nighttime ASTER images available over the last 22 years. We focus on changes to seven features observed by satellite with temperatures at least 2 K above background (Trahuilco, Las Sopas, Los Venados, Los Baños/El Azufral, Puyehue, Laccolith, and a new unnamned feature). We create time series for each feature in order to: (1) evaluate temporal changes in area and temperature, (2) detect significant deviations from standard seasonality in non-eruptive periods, and (3) test for statistically significant precursors to the 2011 eruption. We identify both seasonal temperature variation and a general subtle increase in temperature over time at the laccolith. Furthermore, we find growth in the area of the laccolith with temperatures above background since 2016 including two periods of sudden increase in area between 11/2017 - 9/2018 and in mid 2020. We compare the ASTER observations with higher spatial resolution observations of fissures, craters, and fumaroles identified from field observations, drone thermal and optical imagery and high spatial resolution (~1 m/pixel) satellite SAR and optical data. We interpret the thermal changes at the laccolith to be related to fractures and craters in the laccolith exposing hot regions. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2114382
- PAR ID:
- 10402240
- Date Published:
- Journal Name:
- AGU Fall Meeting, Chicago, IL & Online Everywhere, 12-16 December 2022
- Page Range / eLocation ID:
- V32D-0096
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Volcanic summit craters are typically noted to form by roof collapse into a depressurized magma chamber or by explosive excavation. Recent examples of effusive activity (e.g., Kilauea Volcano, Hawai'i) allowed specifically for quantification of the collapse process. However, small spatiotemporal morphologic change related to background mass wasting and low‐level explosive activity has not been well quantified in volcanic craters. Telica volcano, Nicaragua, is a persistently restless basaltic‐andesite stratovolcano. Telica's persistent restlessness is caused by a long‐lived magmatic‐hydrothermal system with high‐temperature crater fumaroles and low‐frequency seismicity, punctuated by subdecadal, low‐explosivity (VEI 1–2) phreatic eruptions. We use photographic observations (1994 to 2017) and structure‐from‐motion point cloud construction and differencing (2011 to 2017) to analyze changes at Telica in the context of summit crater formation and eruptive precursors. Crater wall retreat (up to 40 m) spatially correlates with long‐lived high‐temperature fumaroles in the crater walls, whereas eruptions eject material (>5 m) from the crater floor through vent formation and/or clearing. These processes sustain a morphology similar to that of pit craters but without a shallow depressurized magma chamber. Our observations indicate system‐wide sealing prior to eruption by viscous magma in the conduit and eruption of a dome in 2017 and hydrothermal mineralization, not from vent covering talus; though, vent covering talus can redirect the shallow conduit. This study shows promise for photogrammetric techniques in correlating morphologic change with summit crater formation and volcanic activity and the power of long‐term visual observations in understanding active volcanic processes.more » « less
- 
            The 2011–2012 eruption at Cordón Caulle, Chile offers an exceptional opportunity to investigate topographic evolution of a laccolith, lava flows, and tephra during and after rhyolitic eruptions using satellite TanDEM-X and Plèiades data. We find distinct phases: rapid surface uplift from the laccolith and tephra (June–August 2011) and lava (June 2011–March 2012), followed by a reduction in the elevation of the laccolith and tephra (up to 19 m yr−1) until February 2013, and slower subsidence of all deposits until 2019 (the most recent data). The spatial distribution of subsidence-to-uplift ratios shows different volcanic and geomorphological processes occurring (degassing, cooling, crystallization, lateral movement, compaction, erosion). Pre-eruptive river channels showed elevation increases of up to 10–50 m due to tephra deposition, but this tephra was largely removed within three to four years. This research shows the potential of repeating high-resolution remote sensing elevation data to elucidate volcanic landscape evolution and yields insights into the co- and post-eruptive evolution of deposits.more » « less
- 
            Puyehue-Cordon Caulle (PCC) is an active volcanic complex located in the SVZ of the Andes that has had three major historic rhyodacitic eruptions with the most recent event in 2011-12. We provide petrologic and geochemical evidence that PCC is underlain by a crystal mush using recently identified basaltic mafic enclaves that highlights the involvement of distinct mafic magma components during the 2011-12 eruption. We suggest the mafic enclaves represent remnants of the crystal-rich mush that get entrained during eruption of the crystal-poor rhyodacite melt lens cap. This architecture requires the basaltic mush to produce rhyodacite through efficient fractionation. The dominant population of enclaves are equigranular, crystal-rich (45-55%), vesiculated (10-20%), and display interlocking grains between phases. Vesicles have complex shapes filling the irregular interlocking textures, while phenocrysts show stepwise normal zoning (uniform plagioclase cores, ~An90, overgrown with weakly zoned rims, ~An60). A second porphyritic population may represent mafic recharge into the system that bypasses the mush unperturbed. The porphyritic enclaves have spherical vesicles and tightly bound primitive mineral compositions (Fo80-86 vs Fo70-86 in the equigranular enclaves). Published geothermobarometry from the 2011-12 rhyodacite suggests shallow magma storage (5-7 km, 100-140 MPa, 895°C), which we compare against newly determined mineral-mineral trace-element partitioning based thermometry. Our thermometry indicates the equigranular enclaves were stored at ~900-1000°C at the time of eruption suggesting both a compositionally and thermally zoned magma system. We combine this temperature information with trace element data and mass balance calculations from various minerals phases and melt to substantiate our previous hypothesis that the basaltic enclaves can produce rhyodacite given their crystallinity. These estimates may support a spatially connected basaltic crystal-mush underlying a rhyodacite melt lens cap further proving highly efficient rhyolite formation at PCC. PCC’s enclaves present one of the largest compositional gaps on record globally. We compare them to other enclave-bearing systems and how PCC is an important end-member to understand enclaves as well as rhyolite formation.more » « less
- 
            The pixel is a fundamental element of contemporary visual culture, with pictorial and perceptual properties that affect the interpretation of the digital composition as a whole. Despite its importance, however, the pixel remains a neglected object of analysis in cultural sociology and critical media studies. To advance a framework of pixel studies I present a hermeneutical approach. Empirically, I focus on the pixel’s political and socio-technical dimensions through satellite images of violence in the Syrian conflict zone (2011–2017). Through interviews and observations, I study the satellite programmers, technicians, archeologists, and anthropologists who comprised an interdisciplinary effort to interpret satellite pictures of archeological damage and other forms of cultural violence during the war. Their interpretations, some of which were the basis for consequential decisions by US policymakers, involved isolating as few as two pixels on the screen. To explain what this entailed, I draw on theories from Alberto Romele and Don Ihde to situate the pixel within a hermeneutic circle through which satellite images were ‘read’ at different levels. My findings have implications for broader sociological and media studies critiques of the epistemic status of digital media in light of their deep interrelations of politics, technology, and people.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    