skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantifying Large‐Scale Surface Change Using SAR Amplitude Images: Crater Morphology Changes During the 2019–2020 Shishaldin Volcano Eruption
Abstract Morphological processes often induce meter‐scale elevation changes. When a volcano erupts, tracking such processes provides insights into the style and evolution of eruptive activity and related hazards. Compared to optical remote‐sensing products, synthetic aperture radar (SAR) observes surface change during inclement weather and at night. Differential SAR interferometry estimates phase change between SAR acquisitions and is commonly applied to quantify deformation. However, large deformation or other coherence loss can limit its use. We develop a new approach applicable when repeated digital elevation models (DEMs) cannot be otherwise retrieved. Assuming an isotropic radar cross‐section, we estimate meter‐scale vertical morphological change directly from SAR amplitude images via an optimization method that utilizes a high‐quality DEM. We verify our implementation through simulation of a collapse feature that we modulate onto topography. We simulate radar effects and recover the simulated collapse. To validate our method, we estimate elevation changes from TerraSAR‐X stripmap images for the 2011–2012 eruption of Mount Cleveland. Our results reproduce those from two previous studies; one that used the same dataset, and another based on thermal satellite data. By applying this method to the 2019–2020 eruption of Shishaldin Volcano, Alaska, we generate elevation change time series from dozens of co‐registered TerraSAR‐X high‐resolution spotlight images. Our results quantify previously unresolved cone growth in November 2019, collapses associated with explosions in December–January, and further changes in crater elevations into spring 2020. This method can be used to track meter‐scale morphology changes for ongoing eruptions with low latency as SAR imagery becomes available.  more » « less
Award ID(s):
1855126 2019232
PAR ID:
10420682
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
127
Issue:
8
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With approximately 800 million people globally living within 100 km of a volcano, it is essential that we build a reliable observation system capable of delivering early warnings to potentially impacted nearby populations. Global Navigation Satellite System (GNSS) and satellite Synthetic Aperture Radar (SAR) document comprehensive ground motions or ruptures near, and at, the Earth’s surface and may be used to detect and analyze natural hazard phenomena. These datasets may also be combined to improve the accuracy of deformation results. Here, we prepare a differential interferometric SAR (DInSAR) time series and integrate it with GNSS data to create a fused dataset with enhanced accuracy of 3D ground motions over Hawaii island from November 2015 to April 2021. We present a comparison of the raw datasets against the fused time series and give a detailed account of observed ground deformation leading to the May 2018 and December 2020 volcanic eruptions. Our results provide important new estimates of the spatial and temporal dynamics of the 2018 Kilauea volcanic eruption. The methodology presented here can be easily repeated over any region of interest where an SAR scene overlaps with GNSS data. The results will contribute to diverse geophysical studies, including but not limited to the classification of precursory movements leading to major eruptions and the advancement of early warning systems. 
    more » « less
  2. Abstract. The objective of this note is to provide the backgroundand basic tools to estimate the statistical error of deformation parametersthat are calculated from displacement fields retrieved from syntheticaperture radar (SAR) imagery or from location changes of position sensors inan array. We focus here specifically on sea ice drift and deformation. Inthe most general case, the uncertainties of divergence/convergence, shear,vorticity, and total deformation are dependent on errors in coordinatemeasurements, the size of the area and the time interval over which theseparameters are determined, as well as the velocity gradients within the boundary ofthe area. If displacements are calculated from sequences of SAR images, atracking error also has to be considered. Timing errors in position readingsare usually very small and can be neglected. We give examples for magnitudesof position and timing errors typical for buoys and SAR sensors, in thelatter case supplemented by magnitudes of the tracking error, and apply thederived equations on geometric shapes frequently used for derivingdeformation from SAR images and buoy arrays. Our case studies show that thesize of the area and the time interval for calculating deformationparameters have to be chosen within certain limits to make sure that theuncertainties are smaller than the magnitude of deformation parameters. 
    more » « less
  3. Abstract In 2018 Kı̄lauea volcano erupted a decade's worth of basalt, given estimated magma supply rates, triggering caldera collapse. Yet, less than 2.5 years later Kı̄lauea re‐erupted. At the 2018 eruption onset, pressure within the summit reservoir was ∼20 MPa above magmastatic. By the onset of collapse this decreased by ∼17 MPa. Analysis of magma surges at the 2018 fissures, following collapse events, implies excess pressure at the eruption end of only ∼1 MPa. Given the new vent elevation, ∼11–12 MPa pressure increase was required to bring magma to the surface in December 2020. Analysis of Global Positioning System data between 8/2018 and 12/2020 shows there was a 73% probability that this condition was met at the onset of the 2020 eruption. Given a plausible range of possible vent elevations, there was a 40%–88% probability of sufficient pressure to bring magma to the surface 100 days before the eruption. 
    more » « less
  4. Fault friction is central to understanding earthquakes, yet laboratory rock mechanics experiments are restricted to, at most, meter scale. Questions thus remain as to the applicability of measured frictional properties to faulting in situ. In particular, the slip-weakening distance d c strongly influences precursory slip during earthquake nucleation, but scales with fault roughness and is challenging to extrapolate to nature. The 2018 eruption of Kīlauea volcano, Hawaii, caused 62 repeatable collapse events in which the summit caldera dropped several meters, accompanied by M W 4.7 to 5.4 very long period (VLP) earthquakes. Collapses were exceptionally well recorded by global positioning system (GPS) and tilt instruments and represent unique natural kilometer-scale friction experiments. We model a piston collapsing into a magma reservoir. Pressure at the piston base and shear stress on its margin, governed by rate and state friction, balance its weight. Downward motion of the piston compresses the underlying magma, driving flow to the eruption. Monte Carlo estimation of unknowns validates laboratory friction parameters at the kilometer scale, including the magnitude of steady-state velocity weakening. The absence of accelerating precollapse deformation constrains d c to be ≤ 10 mm, potentially much less. These results support the use of laboratory friction laws and parameters for modeling earthquakes. We identify initial conditions and material and magma-system parameters that lead to episodic caldera collapse, revealing that small differences in eruptive vent elevation can lead to major differences in eruption volume and duration. Most historical basaltic caldera collapses were, at least partly, episodic, implying that the conditions for stick–slip derived here are commonly met in nature. 
    more » « less
  5. Abstract The processing of hundreds of Synthetic Aperture Radar (SAR) images acquired by two satellite systems: Sentinel‐1 and COSMO‐SkyMed reveals a decade of ground deformation for a ∼0.5 km diameter area around the summit crater of the only active carbonatitic volcano on Earth: Ol Doinyo Lengai in Tanzania. Further decomposing ascending and descending orbits when the appropriate SAR data sets overlap allow us to interpret the imaged deformation as ground subsidence with a significant rate of ∼3.6 cm/yr for the pixels located just north of the summit crater. Using geodetic modeling and inverting the highest spatial resolution COSMO‐SkyMed data set, we show that the mechanism explaining this subsidence is most likely a deflating very shallow (≤1 km depth below the summit crater at the 95% confidence level) magma reservoir, consistent with geochemical‐petrological and seismo‐acoustic studies. 
    more » « less