skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Opportunities for the materials research community to support the development of the H2 economy
Abstract The goal of decarbonizing global energy systems by 2050 is a challenge of unprecedented scope and ambition. Hydrogen has been identified as an important enabler for this effort, but its precise role in the energy transition and future energy system remains unclear. The MRSFocus on Sustainability subcommitteesponsored a panel discussion on the roles of and materials needs associated with hydrogen in the energy transition. This commentary summarizes key elements from the panel discussion and addresses how the materials research community can engage more deeply with the H2energy transition. The topics include inventing new materials with improved properties for advanced technologies, but also supporting the growth of a robust manufacturing base, improving materials corrosion mitigation, helping to de-risk supply chains, and training qualified workers across the industrial ecosystem to reinforce a culture of safety and support the evolution of commercial processes and business models. Graphical abstract  more » « less
Award ID(s):
1916860
PAR ID:
10402393
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Cambridge University Press (CUP)
Date Published:
Journal Name:
MRS Energy & Sustainability
Volume:
10
Issue:
2
ISSN:
2329-2237
Format(s):
Medium: X Size: p. 158-173
Size(s):
p. 158-173
Sponsoring Org:
National Science Foundation
More Like this
  1. AbstractEfforts to reach net zero targets by the second half of the century will have profound materials supply implications. The anticipated scale and speed of the energy transition in both transportation and energy storage raises the question of whether we risk running out of the essential critical materials needed to enable this transition. Early projections suggest that disruptions are likely to occur in the short term for select critical materials, but at the same time these shortages provide a powerful incentive for the market to respond in a variety of ways before supply-level stress becomes dire. In April 2023, the MRSFocus on Sustainability subcommitteesponsored a panel discussion on the role of innovation in materials science and engineering in supporting supply chains for clean energy technologies. Drawing on examples from the panel discussion, this perspective examines the myth of materials scarcity, explains the compelling need for innovation in materials in helping supply chains dynamically adapt over time, and illustrates how the Materials Research Society is facilitating engagement with industry to support materials innovation, now and in the future. Graphical Abstract HighlightsIn this commentary, we examine the myth of materials scarcity, explain the compelling need for innovation in materials in helping supply chains dynamically adapt over time, and show how the materials research community can effectively engage with industry, policymakers, and funding agencies to drive the needed innovation in critical areas. DiscussionDemand for certain materials used in clean energy technologies is forecasted to increase by multiples of current production over the next decades. This has drawn attention to supply chain risks and has created a myth that we will “run out” out of certain materials during the energy transition. The reality is that markets have multiple mechanisms to adapt over the long-term, and near-term shortages or expectations of shortages provide a powerful incentive for action. In this commentary, we highlight different ways materials innovation can help solve these issues in the near term and long term, and how the materials research community can effectively engage with industry and policymakers. 
    more » « less
  2. Abstract Affinities of six anions (mesylate, acetate, trifluoroacetate,p‐toluenecarboxylate,p‐toluenesulfonate, and perfluorooctanoate) for three related Pt2+‐linked porphyrin nanocages were measured to probe the influence of different noncovalent recognition motifs (e. g., hydrogen bonding, electrostatics, π bonding) on anion binding. Two new hosts of M6L312+(1b) and M4L28+(2) composition (M=(en)Pt2+, L=(3‐py)4porphyrin) were prepared in a one‐pot synthesis and allowed comparison of hosts that differ in structure while maintaining similar N−H hydrogen‐bond donor ability. Comparisons of isostructural hosts that differ in hydrogen‐bonding ability were made between1band a related M6L312+nanoprism (1a, M=(tmeda)Pt2+) that lacks N−H groups. Considerable variation in association constants (K1=1.6×103 M−1to 1.3×108 M−1) and binding mode (exovs.endo) were found for different host–guest combinations. Strongest binding was seen betweenp‐toluenecarboxylate and1b, but surprisingly, association of this guest with1awas only slightly weaker despite the absence of NH⋅⋅⋅O interactions. The high affinity betweenp‐toluenecarboxylate and1acould be turned off by protonation, and this behavior was used to toggle between the binding of this guest and the environmental pollutant perfluorooctanoate, which otherwise has a lower affinity for the host. 
    more » « less
  3. Abstract The chemical dynamics of the elementary reaction of ground state atomic silicon (Si;3P) with germane (GeH4; X1A1) were unraveled in the gas phase under single collision condition at a collision energy of 11.8±0.3 kJ mol−1exploiting the crossed molecular beams technique contemplated with electronic structure calculations. The reaction follows indirect scattering dynamics and is initiated through an initial barrierless insertion of the silicon atom into one of the four chemically equivalent germanium‐hydrogen bonds forming a triplet collision complex (HSiGeH3;3i1). This intermediate underwent facile intersystem crossing (ISC) to the singlet surface (HSiGeH3;1i1). The latter isomerized via at least three hydrogen atom migrations involving exotic, hydrogen bridged reaction intermediates eventually leading to the H3SiGeH isomeri5. This intermediate could undergo unimolecular decomposition yielding the dibridged butterfly‐structured isomer1p1(Si(μ‐H2)Ge) plus molecular hydrogen through a tight exit transition state. Alternatively, up to two subsequent hydrogen shifts toi6andi7, followed by fragmentation of each of these intermediates, could also form1p1(Si(μ‐H2)Ge) along with molecular hydrogen. The overall non‐adiabatic reaction dynamics provide evidence on the existence of exotic dinuclear hydrides of main group XIV elements, whose carbon analog structures do not exist. 
    more » « less
  4. Abstract Sn‐based materials are identified as promising catalysts for the CO2electroreduction (CO2RR) to formate (HCOO). However, their insufficient selectivity and activity remain grand challenges. A new type of SnO2nanosheet with simultaneous N dopants and oxygen vacancies (VO‐rich N‐SnO2NS) for promoting CO2conversion to HCOOis reported. Due to the likely synergistic effect of N dopant andVO, theVO‐rich N‐SnO2NS exhibits high catalytic selectivity featured by an HCOOFaradaic efficiency (FE) of 83% at−0.9 V and an FE of>90% for all C1 products (HCOOand CO) at a wide potential range from −0.9 to−1.2 V. Low coordination Sn–N moieties are the active sites with optimal electronic and geometric structures regulated byVOand N dopants. Theoretical calculations elucidate that the reaction free energy of HCOO* protonation is decreased on theVO‐rich N‐SnO2NS, thus enhancing HCOOselectivity. The weakened H* adsorption energy also inhibits the hydrogen evolution reaction, a dominant side reaction during the CO2RR. Furthermore, using the catalyst as the cathode, a spontaneous Galvanic Zn‐CO2cell and a solar‐powered electrolysis process successfully demonstrated the efficient HCOOgeneration through CO2conversion and storage. 
    more » « less
  5. Abstract ortho‐Phosphinophenol (oPP) is an unusual example of an air‐stable primary phosphine and a valuable precursor to a variety of useful organophosphorus compounds. The presence of PH2and OH functionalities offers the possibility of intermolecular and intramolecular P⋅⋅⋅HO hydrogen bonding (HB). The close proximity of these two groups also offers the opportunity for intramolecular PH2⋅⋅⋅HO dihydrogen bonding (DHB). This work provides experimental and computational evidence for these various types of interactions. In the solid state,oPPis associated by significant intermolecular P⋅⋅⋅HO hydrogen bonds as revealed by a single crystal X‐ray structural determination. Multinuclear NMR and IR spectroscopic studies, coupled with DFT computational studies, suggest thatoPPadopts multiple conformations in solution whose nature varies with the identity of the solvent. In the gas phase or non‐polar solvents (such as cyclohexane) an equilibrium between four conformations ofoPPis proposed. Interestingly,in silico, a conformational isomer having bifurcated intramolecular PH2⋅⋅⋅HODHB(PP4) is found to be more stable than a conformational isomer having intramolecular P⋅⋅⋅HOHB(PP1). In polar solvents (S), NMR studies indicate intermolecular OH⋅⋅⋅S HBplays a dominant role in modulating31P NMR chemical shifts over a 17 ppm range. 
    more » « less