skip to main content


Title: Ultra-thin ZrO 2 overcoating on CuO-ZnO-Al 2 O 3 catalyst by atomic layer deposition for improved catalytic performance of CO 2 hydrogenation to dimethyl ether
Abstract

An ultra-thin overcoating of zirconium oxide (ZrO2) film on CuO-ZnO-Al2O3(CZA) catalysts by atomic layer deposition (ALD) was proved to enhance the catalytic performance of CZA/HZSM-5 (H form of Zeolite Socony Mobil-5) bifunctional catalysts for hydrogenation of CO2to dimethyl ether (DME). Under optimal reaction conditions (i.e. 240 °C and 2.8 MPa), the yield of product DME increased from 17.22% for the bare CZA/HZSM-5 catalysts, to 18.40% for the CZA catalyst after 5 cycles of ZrO2ALD with HZSM-5 catalyst. All the catalysts modified by ZrO2ALD displayed significantly improved catalytic stability of hydrogenation of CO2to DME reaction, compared to that of CZA/HZSM-5 bifunctional catalysts. The loss of DME yield in 100 h of reaction was greatly mitigated from 6.20% (loss of absolute value) to 3.01% for the CZA catalyst with 20 cycles of ZrO2ALD overcoating. Characterizations including hydrogen temperature programmed reduction, x-ray powder diffraction, and x-ray photoelectron spectroscopy revealed that there was strong interaction between Cu active centers and ZrO2.

 
more » « less
Award ID(s):
2306177
NSF-PAR ID:
10402412
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Nanotechnology
Volume:
34
Issue:
23
ISSN:
0957-4484
Page Range / eLocation ID:
Article No. 235401
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Supported metal nanoparticle catalysts have become increasingly crucial for many catalytic applications. However, long‐term catalyst stability remains a problem due to catalyst deactivation caused by coke formation and sintering. The deposition of a thin overcoating via atomic layer deposition (ALD) onto metal‐supported nanoparticles has shown to greatly inhibit catalyst deactivation. This work utilizes a model catalyst system comprised of Pt nanoparticles supported on Al2O3to demonstrate the effect of an atomically thin overcoating on supported metal nanoparticles. Continuous operando small‐angle X‐ray scattering (SAXS) and X‐ray absorption near edge spectroscopy (XANES) monitor structural and electronic changes to the catalyst and overcoating during calcination. SAXS data fitting reveals the formation of nanopores in the overcoating at high temperatures, while XANES monitors the oxidation state of the Pt catalyst. Herein, the usefulness of combined X‐ray techniques is demonstrated to characterize supported metal catalysts to further understanding of the synergistic effects of the ALD overcoating to aid in the design of new catalyst materials.

     
    more » « less
  2. Abstract

    A series of NiO/HZSM‐5 catalysts were used to convert alkali lignin to hydrocarbon biofuels in a two‐stage catalytic pyrolysis system. The results indicated that all NiO/HZSM‐5 catalysts reduced the content of undesirable phenols, furans, and alcohols of the biofuel compared to non‐catalytic treatment. The NiO/HZSM‐5 catalyst with the lowest amount of NiO generated the highest biofuel yield in all catalytic treatments, and it also produced biofuel with the highest content of hydrocarbons. The emission of carbon oxides (CO and CO2) increased in the treatments with higher‐NiO loading HZSM‐5 due to the redox reaction between NiO and the oxygenated compounds in the bio‐oil. Ni2SiO4was generated in the used NiO/HZSM‐5 catalysts during the high‐temperature pyrolysis process.

     
    more » « less
  3. Catalytic hydrogenation of aromatic compounds is an important industrial process, particularly for the production of many petrochemical and pharmaceutical derivatives. This reaction is mainly catalyzed by noble metals, but rarely by metal oxides. Here, we report the development of monoclinic hydrogen-bearing ruthenium dioxide with a nominal composition of H x RuO 2 that can serve as a standalone catalyst for various hydrogenation reactions. The hydrogen-bearing oxide was synthesized through the water gas shift reaction of CO and H 2 O in the presence of rutile RuO 2 . The structure of H x RuO 2 was determined by synchrotron X-ray diffraction and density functional theory (DFT) studies. Solid-state 1 H NMR and Raman studies suggest that this compound possesses two types of isolated interstitial protons. H x RuO 2 is very active in hydrogenation of various arenes, including liquid organic hydrogen carriers, which are completely converted to the corresponding fully hydrogenated products under relatively mild conditions. In addition, high selectivities (>99%) were observed for the catalytic hydrogenation of functionalized nitroarenes to corresponding anilines. DFT simulations yield a small barrier for concerted proton transfer. The facile proton dynamics may be key in enabling selective hydrogenation reactions at relatively low temperature. Our findings inspire the search for hydrogen-containing metal oxides that could be employed as high-performance materials for catalysts, electrocatalysts, and fuel cells. 
    more » « less
  4. Abstract

    The design of supported heterogeneous catalysts requires a detailed understanding of the structure and chemistry of the active surface. Although the chemical components of the active phase, support material, and process feed are typically considered to be the most important factors governing catalyst structure and performance, many common commercial supports contain trace impurities, which can have profound effects on catalyst properties. In this work, we study silica‐supported cobalt‐based catalysts, which are widely used in syngas conversion to value‐added products. Supported metallic Co is a commercial Fischer‐Tropsch catalyst, whereas Co2C has shown promise for the direct conversion of syngas to higher oxygenates. This study examines the effects of Na, a commonly detected support impurity and a frequently used promoter, on the structure and reactivity of Co and Co2C. We show that trace Na impurities significantly decrease catalyst activity of supported metallic Co, and that high Na concentrations result in Co2C formation and a loss in Fischer‐Tropsch activity. However, in Co2C catalysts, Na plays an important role in stabilizing the Co2C phase, but excess Na decreases catalyst activity. We use in situ X‐ray absorption spectroscopy to study Co2C formation and decomposition in the Na‐free catalyst under carburization and reaction conditions. The work reveals the importance of carefully controlling alkali metal content, particularly at trace levels, in catalyst design.

     
    more » « less
  5. Abstract

    The syntheses of the 2,9‐dimesityl‐1,10‐phenanthroline (dmesp) metal complexes, [Cu(dmesp)(MeCN)]PF6(1), [Cu(dmesp)2]PF6(2), Fe(dmesp)Cl2(3), Co(dmesp)Cl2(4), Ni(dmesp)Cl2(5), Zn(dmesp)Cl2(6), Pd(dmesp)MeCl (7), Cu(dmesp)Cl (8), and Pd(dmesp)2Cl2(9), in good to high yields are described. These complexes were characterized by1H and13C NMR spectroscopy, HR–MS (ESI and/or APPI), and elemental analysis (CHN). The solid‐state structures of complexes18were determined by single‐crystal X‐ray analysis and their photophysical properties were also characterized. To demonstrate the versatility of this new platform, complexes35,8, and9were employed in the catalytic oligomerization of ethylene using modified methyl aluminoxane (MMAO) as the cocatalyst, where Co(II) and Ni(II) complexes (4and5, respectively) were found to exhibit moderate selectivity for catalytic dimerization of ethylene to butenes over tri‐ or tetramerization. Complex8is an effective catalyst of both the commonly encountered “click” reaction and amine arylation chemistries. Complexes6and9were found to be excellent catalysts for Friedel‐Crafts alkylation and Suzuki‐Miyaura coupling, respectively.

     
    more » « less